Klausur zur Vorlesung Koordinationschemie, SS 2017

18. August 2017, 10:15-11:45 Uhr

Stichworte zur Lösung

- (a) ls-[Fe(phen)₃]³⁺ (LFSE = -20 Dq) wegen des Starkfeldliganden, ls-[Co(H₂O)₆]³⁺ (-24 Dq) wegen des hohen g_M-Wertes von Cobalt(III); hs-[Fe(acac)₃] (0 Dq) und hs-[Mn(ox)₃]³⁻ (-6 Dq) wegen der Schwachfeldliganden; bei d⁸-[Ni(NH₃)₆]²⁺ (-12 Dq) stellt sich die hs/ls-Frage nicht. (b) μ_{eff}(spin-only) = 1.73, 0, 5.92, 4.90, 2.83.
 (c) Tris(1,10-phenanthrolin)eisen(III)- und Hexaaquacobalt(III)-Ion, Tris(acetylacetonato)eisen(III), Tris(oxalato)manganat(III)- und Hexaamminnickel(II)-Ion.
 (d) Optische Isomere bei den Chelatkomplexen (Skizze siehe Skript Kap. 11.1).
- (a) [Ni^{II}Cl₄]²⁻: d⁸-Schwachfeldfall, *T*-4; [Ni^{II}(CN)₄]²⁻: d⁸-Starkfeldfall, *SP*-4; [Cu^I(CN)₄]²⁻ und [Ni⁰(CN)₄]²⁻: d¹⁰, *T*-4; [Rh^I(CO)₂I₂]⁻: d⁸-Starkfeldfall, *SP*-4.
 (b) Pentaammin-nitrito-κ*N*-cobalt(III)-chlorid und Pentaammin-nitrito-κ*O*-cobalt(III)-chlorid. (c) Mit dem leichter oxidierbaren Iodido-Liganden wird die LMCT-Bande bei niedrigerer Energie (rotverschoben) angeregt. Daneben werden die für Chrom(III)-Komplexe üblichen d-d-Banden erscheinen (siehe Skript).
- 3 (a) Cr ← C=O| Cr ← C=Ō
 - (b) Freies CO: Bindungsordnung 3, diese ist in der rechten Lewisformel erniedrigt. (c) IR-Banden treten auf, wenn sich bei der Schwingung das Dipolmoment ändert; bei der höchstsymmetrischen Schwingung bleibt dieses aber 0. (d) n = 5 im 18e-Pentacarbonylchromat(-II)-Ion. (e) In zwei Schritten zum Fischer-Carben wie im Skript Kap. 13.4 für Fe dargestellt.
- **4 (a)** Alles wie im Skript Kap. 5.1 für d^9 -[Cu(H₂O)₆]²⁺ hier für d^4 -Cr^{II}. **(b)** Outer-sphere-Reaktion im Sauren: $[Co(NH_3)_6]^{3+} + [Cr(H_2O)_6]^{2+} + 6 H_3O^+ \rightarrow [Co(H_2O)_6]^{2+} + [Cr(H_2O)_6]^{3+} + 6 NH_4^+$; inner-sphere: $[Co(NH_3)_5Cl]^{2+} + [Cr(H_2O)_6]^{2+} + 5 H_3O^+ \rightarrow [Co(H_2O)_6]^{2+} + [Cr(H_2O)_5Cl]^{2+} + 5 NH_4^+$. **(c)** LFSE Cr^{III}: -12 Dq, Cr^{II}: -6 Dq bei insgesamt kleinerem 10-Dq-Wert. **(d)** $[CoCl_4]^{2-}$, T-4, T-4, T-12 Dq.