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sensitivity. Reproduction of the observed radi-
ance record requires a global moistening of the
upper troposphere in response to atmospheric
warming that is roughly equivalent in magni-
tude to that predicted under the assumption of
constant relative humidity. This behavior is
consistent with that simulated from current
models and provides key quantitative evi-
dence in support of their ability to predict the
climate feedback from upper tropospheric
water vapor. Given the importance of water
vapor feedback in determining the climatic
response to anthropogenic forcings, such
confirmation is essential to the use of these
models for global warming projections.
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Synthesis of a Stable Compound
with Fivefold Bonding Between
Two Chromium(l) Centers

Tailuan Nguyen,’ Andrew D. Sutton,” Marcin Brynda,’
James C. Fettinger," Gary J. Long,? Philip P. Power'*

Although in principle transition metals can form bonds with six shared electron
pairs, only quadruply bonded compounds can be isolated as stable species at
room temperature. Here we show that the reduction of {Cr(u-Cl)Ar’}, [where Ar’
indicates C,H,-2,6(C,H,;-2,6-Pr',), and Pr' indicates isopropyl] with a slight
excess of potassium graphite has produced a stable compound with fivefold
chromium-chromium (Cr-Cr) bonding. The very air- and moisture-sensitive
dark red crystals of AFCrCrAr’ were isolated with greater than 40% yield. X-ray
diffraction revealed a Cr-Cr bond length of 1.8351(4) angstroms (where the
number in parentheses indicates the standard deviation) and a planar trans-
bent core geometry. These data, the structure’s temperature-independent para-
magnetism, and computational studies support the sharing of five electron pairs
in five bonding molecular orbitals between two 3d> chromium(l) ions.

A quadruple bond between metal centers con-
sisting of &, 2, and § orbital overlaps was shown
to be present in salts containing the [Re,Cl]*~
ion in 1964 (7). Since then, a rich chemistry has
developed around this class of transition-metal
compounds (2), whose bond order exceeds the
previously known limit of three for compounds
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of the p-block elements. Beginning in the mid-
1970s, theoretical and spectroscopic investiga-
tions of diatomic transition-metal species M,
(where M is either Cr or Mo) trapped in inert
matrices at low temperatures indicated that
sextuple bonds consisting of 2¢, 2w, and 26
overlaps (derived from valence s and d atomic
orbitals) could exist between these metals
(3—14). However, such molecules have no
stable existence at room temperature and so
cannot be isolated for bulk manipulation.

If ligands are used to stabilize multiply
bonded metal centers, their binding reduces the
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Fig. 1. Thermal ellipsoid (30%) drawing of Ar'CrCrAr’ (compound 1). Hydrogen atoms are not shown.
Selected bond distances and angles ° are as follows: Cr(1)-Cr(1A), 1.8351(4) A; Cr(1)-C(1), 2.131(1) A;
Cr(1)-C(7A), 2.2943(9) A; Cr(1)-C(8A), 2.479(1) A; Cr(1)-Cr(12A), 2.414(1) A; C(1)- C(Z)

1.421(1) A; (1)~
108.78(3)°; Cr(1A)-Cr(1)-C(7A), 94.13(3)°;
Cr(1)-C(1)=C(6), 131.74(7)°; and C(2)-C(1)-C

number of valence orbitals available to form
metal-metal bonds. Thus, the number of ligands
must be minimized, and the number of metal
valence electrons that fill bonding orbitals must
be maximized in order to achieve the highest
bond order possible in an isolable compound.
Moreover, the ligands must be sufficiently bulky
to inhibit intermolecular reactions that yield
clusters or polymers with lower bond orders.
We have shown (/5) that the sterically en-
cumbering monovalent terphenyl ligand C H,-
2,6(CH;-2,6-Pr',), (hereafter designated Ar),
where Pr' is isopropyl, and related derivatives
can stabilize many compounds with low co-
ordination numbers or unusual bonding (16, 17).
We now show that this ligand allows room-
temperature isolation of the Ar'CrCrAr” chromi-
um dimer to occur. The structural, spectroscopic,
and magnetic properties of this compound are
consistent with a quintuple Cr—Cr bond formed
by a fivefold overlap between the metal d
orbitals (/8).

The compound Ar'CrCrAr’ (compound 1)
was isolated as dark red crystals from the
reduction of {Ar'Cr(u-Cl)}, with KCq (19).
The crystals are thermally robust and decom-
pose slowly above 200°C, but they are spon-
taneously flammable when exposed to air.
X-ray crystallography of 1 (Fig. 1) (20) showed
a structure characterized by a center of symmetry
at the midpoint of the very short [1.8351(4) A,
where the number in parentheses indicates SD]
Cr—Cr bond. Each Cr is bonded to the ipso car-
bon atom [distance Cr(1)-C(1) = 2.131(1) A] of
an Ar’ substituent. There is also a weaker inter-

C(6), 1.423(2) A; C(7)-C(8), 1.421(1) A; C(7)-C(12), 1.424(1) A; Cr(1A)-Cr(1)-C(1),
c( )(E‘Sr(1 _)I;Cé?z\)) 163.00(4)°; Cr(1)-C(1)-C(2), 114.34(7)°;

action between each Cr ion [Cr(1)-C(7A) =
2.2943(9) A] and the ipso carbon [C(7) or
C(7A)] of a flanking ring of the terphenyl group
attached to the other Cr. The core atoms,
C(D)Cr(1)Cr(1A)C(1A), are coplanar, but they
have a trans-bent structure with C,, local sym-
metry and a bending Cr(1A)Cr(1)C(1) angle of
102.78(3)°. Magnetic measurements revealed a
temperature-independent paramagnetism of
0.000112(5) electromagnetic units (emu) per
mol of Cr (21). The electronic absorption spec-
trum of 1 displays strong absorptions below
250 nm and a broad absorption at 488 nm, with
an intensity (€) of 3200 mol ' L cm™'.

The metal-metal bonding in compound 1
arises from the interaction of two Cr(I) centers
with d> electron configurations. In a sim-
plified molecular-orbital overlap diagram with
the assumption of local C,, symmetry, five
metal-metal bonding molecular orbitals can
be visualized (Fig. 2) (22, 23). Also, two fur-
ther metal-ligand orbital combinations, bonding
and antibonding with respect to the metal-metal
bond, are present. The bonding is actually more
complex, because mixing of the orbitals with
the same symmetry (i.e., 4s and 3d_ or 3d,. )
can occur. Nonetheless 6(d.—-d, 4 ) on
d.-d.d_-d B)and26(dzzf

dxziyz, dizy xzdxy ;lzg é) Cr—Cr overla)i)sJ in
which electrons from each metal become
paired to fill the five bonding orbitals, are
possible (23).

This fivefold Cr—Cr interaction is supported
by structural and magnetic data. The Cr—Cr

distance is extremely short and is very close to
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the 1.828(2) A bond found in the Cr(II) dimer,
Cr,{C4H;-2-OMe-5-Me},, which has the
shortest reported metal-metal bond distance
(24). In this Cr(Il) compound and related
species, the chelating nature of the ligand plays
a key role in pushing the Cr centers close
together, and it could be argued that the Ar
ligand acts similarly in 1 through the second-
ary Cr—C interactions. However, we have
also synthesized the related ArFeFeAr and
ArCoCoAr dimers, which are structurally
similar to 1 but have much longer Fe—Fe and
Co—Co distances, ~2.53 and 2.80 A, respec-
tively. Thus, the Ar’ ligand can accommodate
M-M separations that vary by almost 1 A. For
this reason, the bridging shown by the Ar
ligand in 1 is unlikely to be the cause of the
short metal-metal distance. In other words, the
very short Cr—Cr bond in 1 is mainly due to
the interaction of the d> Cr centers, rather than
a constraining ligand geometry (25).

The temperature-independent weak para-
magnetism of 1 is also consistent with strongly
coupled d>-d° bonding electrons. Temperature-
independent paramagnetism has been observed
for several other M-M-bonded transition-metal
complexes (26-29). Nonetheless, the possi-
bility that the Cr—Cr multiple bond may be a
combination of covalent bonding with antifer-
romagnetic coupling, which was recently
calculated for the Cr, dimer (/4), should not
be dismissed. The distinction between antifer-
romagnetic coupling and what constitutes a
bond is not clearly defined; therefore, it would
be of great interest to determine the contri-
bution of the antiferromagnetic exchange
coupling to the overall Cr—Cr bond energy.
This exchange coupling is so strong in 1
between 2 and 300 K that, unfortunately,
there is no increase in the susceptibility as
the S > 0 states are populated; i.e., —2J, the
antiferromagnetic exchange coupling, is so
negative that only the S = 0 ground state is
effectively populated at these temperatures.
As a consequence, the susceptibility never
begins to increase with increasing temper-
ature, and it is difficult to determine —2J. The
unpopulated S > 0 excited states yield a second-
order Zeeman contribution of 0.00112(5) emu/
mol Cr to the molar magnetic susceptibility.
This is the so-called “temperature-independent
paramagnetism” (TIP), a contribution which
must be added to the essentially zero contribu-
tion of the S = 0 ground state.

Further insight on the bonding in 1 may be
obtained from computational data. However,
calculations on multiply bonded transition-
metal species have often been difficult because
of electron correlation problems (30, 31). None-
theless, recent studies (8, 32, 33) have sug-
gested that density functional theory (DFT)
methods can compete successfully with high-
level ab initio calculations. Both the trans-bent
geometry and the quintuple-bond formulation
are predicted by the simple, Lewis-like electron-
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Fig. 2. (Left) Schematic drawing of simplified molecular orbital overlaps for
Fig. 3. (Right) Electron density surfaces and
energies for the Cr-Cr bonding orbitals in ArCrCrAr’ (36).

M-M and M-C bonding.

pair sharing scheme of Landis and Weinhold
for transition-metal complexes (34, 35). We
carried out restricted DFT calculations (36)
using hybrid and pure functionals to further
analyze the Cr—Cr interaction. These theoreti-
cal approaches (37) yielded very similar results.
Molecular orbitals were generated from single-
point calculations by using the atomic coor-
dinates provided by the x-ray structure. The
metal-metal orbital surfaces (Fig. 3) support
the view that there are five orbital interactions
between the Cr(I) ions. The symmetries of the
highest occupied molecular orbital (HOMO)
and HOMO — 1, which differ in energy by
041 eV, correspond to & bonds. The HOMO — 2
corresponds to Cr-Cr o bonding and lies at
~1.08 eV lower energy than HOMO — 1.
HOMO - 3 and HOMO - 4 correspond to
Cr—Cr n bonds and lie slightly (~0.21 to
0.35 eV) below the o-bonding level.

The calculated HOMO-lowest unoccupied
molecular orbital (LUMO) energy gap (2.01 eV,
46.35 kcal mol!), which may correspond to a
§-0* transition, is at a somewhat lower energy
than the 58.59 kcal mol™! calculated from the
488-nm absorption maximum in the electronic
spectrum. This discrepancy has precedent in
62132 quadruply bonded M-M species, for
which the experimental 3-6* transition energies
are usually higher than those calculated (2).
Moreover, the putative 5-6* transition lies at
the higher energy end of the ~450 to 1600-nm

HOMO -4

range observed for quadruply bonded com-
pounds (2), which suggests that the § bonds in
1 are as strong as those observed in the quad-
ruply bonded compounds.
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A Direct Role for Dual Oxidase in
Drosophila Gut Immunity

Eun-Mi Ha,’ Chun-Taek Oh,? Yun Soo Bae,’ Won-Jae Lee**

Because the mucosal epithelia are in constant contact with large numbers of
microorganisms, these surfaces must be armed with efficient microbial control
systems. Here, we show that the Drosophila nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase enzyme, dual oxidase (dDuox), is indispensable for
gut antimicrobial activities. Adult flies in which dDuox expression is silenced
showed a marked increase in mortality rate even after a minor infection
through ingestion of microbe-contaminated food. This could be restored by the
specific reintroduction of dDuox, demonstrating that this oxidase generates a
unique epithelial oxidative burst that limits microbial proliferation in the
gut. Thus, oxidant-mediated antimicrobial responses are not restricted to the
phagocytes, but rather are used more broadly, including in mucosal barrier

epithelia.

The innate immune system provides an essen-
tial means of host defense in eukaryotes against
a broad spectrum of microorgansims (/), and
the production of microbicidal reactive oxygen
species (ROS) is a key feature of this pro-
tective response (2—6). To date, most studies
have focused on the molecular mechanism of
respiratory burst in the professional phagocytes
in response to microbial infection (2—6). In
contrast, the oxidant-dependent antimicrobial
properties in mucosal epithelia, which are in
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permanent contact with the microbial realm,
remain largely unknown. In Drosophila, the
nuclear factor kB (NF-xB) pathways are crit-
ical during systemic infection (7—11) but ap-
pear to be less than crucial for host survival
after epithelial infection (/2). Natural gut in-
fection has been associated with the rapid
synthesis of ROS (/2), and the dynamic cycle
of ROS generation and elimination appears
to be vital in Drosophila, because flies that
lack ROS-removal capacity have an increased
mortality (/2). Such observations suggest an
imortant role for ROS generation in controlling
epithelial infection.

To directly examine if the epithelial ox-
idative burst system is required for host survival,
we tested the potential superoxide-producing
activity of intestinal epithelia in vitro (/3). A
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were also performed using pure BP86 and BLYP
functionals, which yielded very similar results.
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BS) approach yielded a wave function corresponding
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basal level of superoxide generation was
maintained in the membrane fraction of dis-
sected intestines, and this increased markedly in
the presence of calcium in a dose-dependent
manner (Fig. 1A). Treatment with EGTA, or
diphenylene iodonium (DPI), which is a flavo-
protein inhibitor that also inhibits the nicotin-
amide adenine dinucleotide phosphate (NADPH)
oxidase—dependent oxidative burst, completely
blocked calcium-activated intestinal superoxide-
producing activity (Fig. 1A). In humans,
phagocytic cells generate the ROS precursor,
superoxide, via the phagocytic oxidase (phox)
complex (2, 5). Recently, the human genome
has been shown to contain several NADPH
oxidase family members [currently designated
the Nox 1-5 and dual oxidase (Duox) 1-2],
each of which is homologous to the phox
catalytic subunit, gp917#°¥/Nox2 (14, 15). The
Duox family can be distinguished from the
Nox family based on the presence of an N-
terminal extracellular peroxidase-homology
domain (PHD) in addition to the gp917/ox-
like oxidase domain (/4, 15). The Nox/Duox
family of enzymes are expressed in a variety
of nonphagocytic cells, suggesting that they
require oxidase functions similar to those of
gp9177ox/Nox2 (16-18). Recently, Duox has
been shown to be expressed in the barrier
epithelia, including epithelial cells of mucosal
surfaces of colon, rectum, salivary gland ducts,
and bronchi (/8-20), and it has been suggested
that Duox may provide an epithelial ROS
source in host defense (/8—20). To determine
the in vivo role of Drosophila Nox and Duox
homologs (dNox and dDuox, respectively)
(fig. S1) with regard to epithelial immunity,
we generated a set of loss-of-function trans-
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