

Journal of Electron Spectroscopy and Related Phenomena 114-116 (2001) 813-818

JOURNAL OF ELECTRON SPECTROSCOPY and Related Phenomena

www.elsevier.nl/locate/elspec

Observation of back-donation in 3d metal cyanide complexes through N K absorption spectra

A.S. Vinogradov^{a,*}, A.B. Preobrajenski^{a,b}, A. Knop-Gericke^c, S.L. Molodtsov^{a,d}, S.A. Krasnikov^a, S.V. Nekipelov^a, R. Szargan^b, M. Hävecker^c, R. Schlögl^c

^aInstitute of Physics, St. Petersburg State University, 198504 St. Petersburg, Russia

^bW.-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, D-04103 Leipzig, Germany ^cFritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany

^d Institut für Oberflächen- und Mikrostrukturphysik, Technische Universität Dresden, D-01062 Dresden, Germany

Received 8 August 2000; received in revised form 13 September 2000; accepted 18 September 2000

Abstract

N K and 3d atom $L_{2,3}$ absorption spectra of hexacyano complexes in solid $K_4Fe(CN)_6$, $Na_4Fe(CN)_6$, $K_3Cr(CN)_6$, $K_3Mn(CN)_6$, $K_3Fe(CN)_6$, and $K_3Co(CN)_6$ have been measured by detecting the total electron yield. The N K spectra of the complexes are very similar and differ only in intensity of the lowest-energy absorption band. The intensity of this feature systematically decreases and its energy position systematically shifts to lower energies along the $[Cr(CN)_6]^{3^-} - [Mn(CN)_6]^{3^-} - [Fe(CN)_6]^{3^-}$ series. In the spectra of $[Co(CN)_6]^{3^-}$ and $[Fe(CN)_6]^{4^-}$ this band is lacking. A similar lowest-energy band is also observed in the 3d metal $L_{2,3}$ absorption spectra of the complexes. These findings were qualitatively explained in terms of π -back-bonding in the formation of lower-energy unfilled electronic states in the 3d metal cyanide complexes. It was found that the lowest-energy band has a common origin in the N K and metal $L_{2,3}$ spectra and it is associated with core electron transitions to the partly filled $2t_{2g}$ MO of these complexes. The occurrence of this band in the N K absorption spectra can be treated as a direct experimental evidence for the appreciable π -back-bonding in the 3d metal cyanide complexes. $(\Sigma = 2001 \text{ Elsevier Science BV}$. All rights reserved.

Keywords: Soft X-ray absorption spectra; 3d Metal cyanide complexes; m-Back-bonding

1. Introduction

Octahedral cyanide complexes of 3d metal atoms are of fundamental importance in coordination chemistry for obtaining a detailed understanding of the transition metal–ligand bonding [1,2]. The $3d\pi$ –

 $2\pi(\pi^*)$ charge transfer (π -back-donation) between the 3d atom and ligands (CN⁻, CO, NO, etc.) with low-lying unfilled antibonding $2\pi(\pi^*)$ molecular orbitals (MOs) is a characteristic feature of chemical bonding in these and similar compounds [3]. Electronic structure of cyano complexes was extensively studied by X-ray absorption, but only the spectra of 3d atoms at the K and L_{2,3} edges are known in the literature [4–7], while no investigations of ligand core excitations are available. The recent X-ray absorption study of K₄Fe(CN)₆ [8] has shown that

^{*}Corresponding author. Tel.: +7-812-428-4352; fax: +7-812-428-7240.

E-mail address: alexander.vinogradov@pobox.spbu.ru (A.S. Vinogradov).

^{0368-2048/01/\$ –} see front matter @ 2001 Elsevier Science B.V. All rights reserved. PII: S0368-2048(00)00272-3

the ligand N K and C K absorption spectra can provide a wealth of information on the local electronic structure of the complex. Furthermore, the chemical state of CN^- anion and the electronic structure of complexes are strongly influenced by the back-donation effect and thus it should be reflected in ligand core excitations. The present study is aimed to investigate and compare X-ray absorption spectra of ligand (nitrogen) and 3d-metal (Cr, Mn, Fe, Co) atoms for a series of hexacyano complexes in order to obtain information on their empty lower-energy electronic states and the π -back-donation effect in the 3d atom–ligand bonding.

2. Experimental

The X-ray absorption measurements on hexacyano complexes in solid K_4 Fe(CN)₆, Na₄Fe(CN)₆, $K_3Mn(CN)_6$, K_3 Fe(CN)₆, $K_3Cr(CN)_6$, and K₃Co(CN)₆ were performed at the PM-1 beamline of the Berliner Elektronenspeicherring für Synchrotronstrahlung (BESSY I) [9]. The samples were prepared by rubbing of the powder in a scratched copper plate. N K and 3d metal L_{2.3} absorption spectra were recorded in the total electron yield (TEY) mode. The photon-energy resolution ΔE was set to 0.4 and 0.7–1.0 eV for the N K and metal (Cr, Mn, Fe, Co) $L_{2,3}$ absorption spectra, respectively. The photon energy was calibrated using the energy of the 1s $\rightarrow \pi^* 2p$ resonance in the N K spectrum of K_4 Fe(CN)₆ (399.6 eV [8]) with an accuracy of ± 0.3 eV. The spectra were normalized to the incident photon flux, which was recorded by measuring TEY of a clean Cu(110) surface.

3. Results and discussion

Fig. 1a shows N K absorption spectra of $K_4Fe(CN)_6$ and $K_3Fe(CN)_6$ that contain a stable octahedral $[Fe(CN)_6]^{n-}$ complex for two formal charge states of the iron atom: Fe(II), n=4 and Fe(III), n=3, respectively. It should be noted that the spectrum of $[Fe(CN)_6]^{4-}$ is not sensitive within experimental accuracy to the substitution of the external potassium cation by the sodium one in accordance with the popular opinion about a

Fig. 1. X-ray absorption spectra of Fe(II) and Fe(III) hexacyano complexes in solid K_4 Fe(CN)₆ and K_3 Fe(CN)₆. (a) N K spectra of complexes compared to that of the cyanide anion in gas-phase HCN [10]. The spectra of complexes are normalized to the intensity of the peak A. (b) Fe L₃ spectra of complexes. The energy scales for N K and Fe L₃ spectra are aligned in energy using XPS data [13] on energy separation (312.1 eV) between the iron $2p_{3/2}$ and nitrogen 1s core levels of K₃Fe(CN)₆.

quasimolecular nature of the X-ray photoabsorption in similar polyatomic systems [4–8]. One can see from this figure that both spectra are dominated by the strong low-energy peak A, which is followed at higher energies by weak bands B–F. The only essential difference between the spectra under comparison is the lowest-energy feature t in the spectrum of the Fe(III) complex, which is absent in the spectrum of the Fe(II) complex.

From the comparison of N K absorption spectra for iron complexes and the cyanide anion CN^- in HCN [10] (Fig. 1a) one can see that the counterparts of the main π^*2p and σ^*2p resonances of CN⁻ (bands A and F) are present in the N K spectra of ligands at similar energies. This experimental fact indicates obviously that the CN⁻ anion is weakly affected by the 3d atom–ligand bonding. Thus, it can be considered as a stable fragment (a quasimolecule) interacting with the central 3d atom. In the vicinity of the π^*2p resonance (additional band t) and in the region between the π^*2p and σ^*2p resonances (new bands B–E₂) the spectra of the complexes and of HCN differ significantly.

The nature of the metal-CN bonding in transition metal cyanides is usually described in terms of σ electron donation from the highest filled, 'lone-pair' MO of CN^- (CN \rightarrow metal) and π -back-donation of metal 3d electrons into the first unfilled antibonding $2\pi(\pi^*)$ orbital of the ligand (metal \rightarrow CN) [1–3]. The first band t is thus representative of the $3d\pi - 2p\pi^*$ bonding effects while the other new absorption bands B-E₂ correspond to transitions of the N K electrons to unoccupied σ MOs of the complexes. In the present paper we restrict ourselves to a consideration of empty π -states that are responsible for lower core excitations in X-ray absorption spectra of complexes; a complete analysis of the spectra obtained will be performed elsewhere. In $[M(CN)_6]^{n-1}$ the metal (valence) 3d orbitals are split by the octahedral ligand field into a higher energy doubly degenerate 3de, orbital and a lower energy triply degenerate $3dt_{2\sigma}$ orbital (Fig. 2). As the $\pi 2p$ MOs of the ligands

are transformed as the irreducible representations t_{1g} , t_{1u} , t_{2g} , and t_{2u} [11], the π -bonding in $[M(CN)_6]^n$ can be generated only through the interaction of the metal $3dt_{2g}$ orbital and the ligand $\pi 2pt_{2g}$ MOs. With consideration for the π -back-donation into the $2\pi(\pi^*)$ MO, there are three $t_{2\sigma}$ MOs for $[M(CN)_6]^{n-}$ that are formed from mixing the metal $3dt_{2\sigma}$ and the ligand bonding $1\pi t_{2\sigma}$ and antibonding $2\pi t_{2g}$ orbitals [3] (Fig. 2). According to the calculations [12], the $1t_{2g}$ (3 t_{2g}) orbital is always filled (unfilled) while the $2t_{2g}$ orbital is gradually populated in going from $[Cr(CN)_6]^{3-}$ to $[Co(CN)_6]^{3-}$ with increasing 3d electron number of the metal atom. From these calculations it is also known that the $2t_{2g}$ orbital is fully occupied in $[Fe(CN)_6]^{4-}$ and has one hole in $[Fe(CN)_6]^{3-}$ resulting in groundstate electronic configurations $\dots (2t_{2g})^6$, ${}^1A_{1g}$ and $(2t_{2g})^5$, ${}^2T_{2g}$ for the Fe(II) and Fe(III) complexes, respectively. Thus, the extra lowest-energy band t in N K absorption spectrum of $[Fe(CN)_6]^{3-}$ complex can be associated with the nitrogen core electron transition to the partly occupied 2t_{2g} MO of this complex. Although the $2t_{2g}$ MO is mainly localized on the metal atom, the N1s \rightarrow 2 t_{2g} transition is observed because of the ligand $2\pi t_{2g}$ contribution to this MO.

815

This assignment of the extra band t is in good agreement with the identification of a similar structure t in the Fe L₃ absorption spectra (Fig. 1b) of $[Fe(CN)_6]^{3-}$ performed in Ref. [14]. After alignment

Fig. 2. Qualitative MO energy level diagram for octahedral $[M(CN)_6]^{3-}$ complexes (M=Cr, Mn, Fe, Co) only with the metal-ligand π -interaction.

in energy using energy separation between the $Fe2p_{3/2}$ and N1s core levels (312.1 eV [13]) the band t has the same energy position in the N K and Fe L_3 spectra. This coincidence is indicative of the common origin for this band in both spectra: it can be assigned to the core electron transitions to the unfilled $2t_{2g}$ MO. Furthermore, in the context of the above MO-description we associate the main double absorption band e–e' with transitions of the Fe2p_{3/2} electrons to the empty $1e_g$ and $3t_{2g}$ MO of the iron complexes.

Let us now consider N K absorption spectra of $[M(CN)_6]^{3-}$ complexes with M=Cr, Mn, Fe, and Co (Fig. 3) taking into account the above considerations regarding the nature of lower-energy empty elec-

Fig. 3. N K absorption spectra of hexacyano complexes in solid $K_3M(CN)_6$ with the metal atom M=Cr(III), Mn(III), Fe(III), and Co(III). The spectra were normalized to the intensity of the peak A. The extra band t is characterized by its energy position $\Delta(A-t)$ and relative intensity I(t)/I(A) in reference to the main peak A.

tronic states in these complexes. From the figure we notice that only the band t undergoes an appreciable decrease in its intensity and a low-energy shift in its position along the $[Cr(CN)_6]^{3-}-[Mn(CN)_6]^{3-} [Fe(CN)_{6}]^{3-}$ series (it is absent in the spectrum of $[Co(CN)_6]^{3^-}$ whereas the other structures A-F are very similar in all the spectra except that the peak A has a shoulder A* in the case of $[Cr(CN)_6]^{3-}$. Because the peak A reflects ligand 2π -states (t_{1g} , t_{1u} , and t_{2u}) that are not involved in the metal-ligand π -bonding, it is convenient to use it as a reference for examination of the observed changes of the band t. Thus, in the order Cr-Mn-Fe, the intensity of the band t relative to that of the peak A, I(t)/I(A), decreases systematically and becomes equal to zero in $[Co(CN)_6]^{3-}$, while the energy separation between the peak A and the band t, $\Delta(A-t)$, increases gradually. In the light of the above electronic structure consideration for $[M(CN)_6]^{3-}$, it is clear that the observed intensity change of the band t is due to successive filling of the $2t_{2g}$ MO in going from $[Cr(CN)_6]^{3-} (2t_{2g}^3)$ to $[Fe(CN)_6]^{3-} (2t_{2g}^5)$ as a result of the increasing 3d electron number of the metal atom. In $[Co(CN)_6]^{3-}$ and $[Fe(CN)_6]^{4-}$ this MO is fully occupied $(2t_{2g}^6)$ and the band t is absent. Since the 2t_{2g} MO is localized mainly on the metal atom, the N1s \rightarrow 2t_{2g} transitions can be observed because of the mixing of the metal $3dt_{2g}$ and ligand $2\pi t_{2g}$ orbitals due to the π -back-bonding between the 3d atom and ligands. Thus, the observation of the band t in the N K absorption spectra of $[M(CN)_6]^{3-}$ with the partially filled upper valence 2t_{2g} MO is a direct experimental evidence for the π -back-bonding in these complexes. The spectral characteristics I(t)/I(A) and $\Delta(A-t)$ may be used for a quantitative evaluation of the π -back-bonding in these complexes.

The lowest-energy band t that changes its relative intensity and energy position in a similar manner along the series of the $[M(CN)_6]^{3-}$ complexes is also observed in the L₃ absorption spectra of 3d atoms for cyano complexes (Fig. 4). This experimental result agrees well with the $2t_{2g}$ -origin of the lowest-energy partly filled electronic state in the hexacyano complexes of Cr(III), Mn(III), and Fe(III).

Fig. 4. Metal atom $L_{2,3}$ absorption spectra of hexacyano complexes in solid $K_3M(CN)_6$ with the metal atom M = Cr(III), Mn(III), Fe(III), and Co(III). The spectra were matched at the energy position of the band e and normalized to its intensity. The extra band t is characterized by its energy position $\Delta(e-t)$ and relative intensity I(t)/I(e) in reference to the band e.

4. Conclusions

The N K and metal $L_{2,3}$ absorption spectra of hexacyano complexes in solid $K_4Fe(CN)_6$, $Na_4Fe(CN)_6$, $K_3Cr(CN)_6$, $K_3Mn(CN)_6$, $K_3Fe(CN)_6$, and $K_3Co(CN)_6$ give information about the π -backbonding and the nature of lower-energy empty electronic states in these complexes. The obtained N K spectra show very similar structures involving the main π^*2p and σ^*2p core excitations of the cyanide anion CN^- . The principal difference between them consists in the occurrence of an additional lowestenergy absorption band t in the spectra of

 $[Cr(CN)_{6}]^{3-}-[Mn(CN)_{6}]^{3-}-[Fe(CN)_{6}]^{3-}.$ This band undergoes an appreciable decrease in its intensity and a gradual shift in its energy position along the $[Cr(CN)_{6}]^{3-}-[Mn(CN)_{6}]^{3-}-[Fe(CN)_{6}]^{3-}$ series and disappears in $[Co(CN)_6]^{3-}$ and $[Fe(CN)_6]^{4-}$. A similar lowest-energy band is also observed in the 3d metal L2.3 absorption spectra of the complexes. These findings were qualitatively explained in terms of a key role of the π -backbonding in the formation of lower-energy unfilled electronic states in the 3d metal cyanide complexes. It was found that the lowest-energy band has a common origin in the N K and metal L_{2,3} spectra and it is associated with core electron transitions to the partly filled $2t_{2g}$ MO of these complexes. The occurrence of this band in N K absorption spectra can be treated as direct experimental evidence for an appreciable π -back-bonding in the 3d metal cyanide complexes.

Acknowledgements

We wish to thank Dr W. Braun and Dr P. Bressler for continuous support at BESSY. ASV gratefully acknowledges the financial support of Fritz-Haber-Institut der Max-Planck-Gesellschaft. This work was supported in part by Russian Foundation for Basic Research under grant number 98-02-18177.

References

- F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 3rd Edition, Wiley, New York, 1972.
- [2] A.G. Sharpe, The Chemistry of Cyano Complexes of the Transition Metals, Academic Press, London, 1976.
- [3] R.G. Shulman, S. Sugano, J. Chem. Phys. 42 (1965) 39.
- [4] M. Obashi, Jpn. J. Appl. Phys. 17 (1978) 563.
- [5] A. Bianconi, M. Dell'Ariccia, P.J. Durham, J.B. Pendry, Phys. Rev. B 26 (1982) 6502.
- [6] M.-A. Arrio, Sainctavit, Cartier dit Moulin, T. Mallah, M. Verdaguer, E. Pellegrin, C.T. Chen, J. Am. Chem. Soc. 118 (1996) 6422.
- [7] T. Hatsui, Y. Takata, N. Kosugi, Chem. Phys. Lett. 284 (1998) 320.
- [8] A.S. Vinogradov, V.N. Akimov, S.V. Nekipelov, A.B. Preobrajenski, Opt. Spektrosk. 79 (1995) 234.
- [9] H. Petersen, Nucl. Instrum. Methods A 246 (1986) 260.

- 818 A.S. Vinogradov et al. / Journal of Electron Spectroscopy and Related Phenomena 114–116 (2001) 813–818
- [10] A.P. Hitchcock, C.E. Brion, Chem. Phys. 37 (1979) 319.
- [11] G. Herzberg, Molecular Spectra and Molecular Structure, Electronic Spectra and Electronic Structure of Polyatomic Molecules, Vol. 3, Van Nostrand Reinhold, New York, 1966.
- [12] J.J. Alexander, H.B. Gray, J. Am. Chem. Soc. 90 (1968) 4260.
- [13] V.I. Nefedov, A.P. Sadovski, L.N. Mazalov, Salyn', E.A. Kravtsova, L. Beyer, N.P. Sergushin, Koord. Khim. (Russian) 1 (1975) 950.
- [14] Cartier dit Moulin, P. Rudolf, A.-M. Flank, C.T. Chen, J. Phys. Chem. 96 (1992) 6196.