Fan, H.-F. (1991). SAP191. Structure Analysis Programs with Intelligent Control. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kino, Y., Lüthi, B. \& Mullen, M. E. (1972). J. Phys. Soc. Jpn. 33, 687-697.
Kino, Y., Lüthi, B. \& Mullen, M. E. (1973). Solid State Commun. 12, 275-277.
Molecular Structure Corporation/Rigaku (1998). TEXSAN. Single Crystal Structure Analysis Software. Version 1.9. MSC. 3200 Research Forest Drive, The Woodlands, TX 77381, USA. and Rigaku Corporation, Tokyo, Japan
Rigaku (1995). Rigaku/AFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1999). C55, 1966-1969

A molecular tetraamminecopper(II)-transdiamminecopper(II) tetracyanonickelate(II) coordination compound \dagger

Christoph Janiak, ${ }^{a *}$ He-Ping Wu, ${ }^{a}$ Peter Klüfers ${ }^{b *}$ and Peter Mayer ${ }^{b}$
${ }^{a}$ Institut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstraße 21, D-79104 Freiburg, Germany, and ${ }^{b}$ Institut für Anorganische Chemie, Universität Karlsruhe, Kaiserstraße 12, D-76131 Karlsruhe, Germany.
E-mail: janiak@uni-freiburg.de

(Received 20 April 1999; accepted 12 August 1999)

Abstract

The title complex, $\left[\mathrm{Ni}_{4} \mathrm{Cu}_{4}(\mathrm{CN})_{16}\left(\mathrm{NH}_{3}\right)_{12}\right]$ or $\{[\mathrm{Cu}-$ $\left.\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\right.$ cis $\left.-\mathrm{Ni}(\mathrm{CN})_{2}(\mu-\mathrm{CN})_{2}\right]$-cyclo- $\left[\right.$ trans $\left.-\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}\right]-$ $\left[\right.$ cis- $\left.\left.\mathrm{Ni}(\mathrm{CN})_{2}(\mu-\mathrm{CN})_{2}\right]\right\}_{2}$, is a dimeric $C_{2 h}$ symmetrical entity built from square-planar $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ anions as cis bridging ligands and (distorted) square-pyramidal copper centres. All of the atoms, except those of the three independent ammine groups, lie on a mirror plane. Copper is coordinated by ammine and tetracyanonickelate ligands. This is a rare example of a discrete molecular cyano-copper-nickel complex.

\section*{Comment}

The interest in coordination polymers formed from metal ions and bridging ligands is fuelled by expectations of developing new materials with unique electronic properties (Robson et al., 1992; Gardner et al., 1995;

^[\dagger Systematic name: dodecaammine- $5 \kappa^{4} N, 6 \kappa^{2} N, 7 \kappa^{2} N, 8 \kappa^{4} N$-octa- μ -cyano-1:5 $\kappa^{2} C: N ; 1: 6 \kappa^{2} C: N ; 2: 6 \kappa^{2} C: N ; 2: 7 \kappa^{2} C: N ; 3: 6 \kappa^{2} C: N ; 3: 7 \kappa^{2} C: N ;$ 4:7 $\kappa^{2} C: N: 4: 8 \kappa^{2} C: N$-octacyano- $1 \kappa^{2} C, 2 \kappa^{2} C, 3 \kappa^{2} C, 4 \kappa^{2} C$-tetracopper(II)tetranickel(II).]

Janiak, Scharmann, Albrecht et al., 1996). Polynuclear $\mathrm{Cu}^{\text {II }}$ complexes have been studied intensely because they form diverse novel structural networks, including chains, sheets and matrices (Chui et al., 1999; Smith, 1998; Janiak, Scharmann, Günther et al., 1996).

Hoffman-type clathrates, $M\left(\mathrm{NH}_{3}\right)_{2} M^{\prime}(\mathrm{CN})_{4} \cdot 2$ (guest), have a layered structure of square-meshed transdiamminemetal $\left[M^{\mathrm{II}}\right]$ tetra-catena- μ-cyanometallate[$\left.M^{\prime \mathrm{II}}\right]$ sheets, with $M^{\prime}=\mathrm{Ni}, \mathrm{Pd}$ or Pt (Dunbar \& Heintz, 1997). Only one of these structures is known where $M=\mathrm{Cu}$ (Miyoshi et al., 1973). We therefore attempted crystallization of additional cyano-bridged tetracyano-nickelate-copper compounds. Ni is the predominant M^{\prime} metal in these framework structures (Park \& Iwamoto, 1992, 1993; Yuge \& Iwamoto, 1994; Yuge et al., 1995, 1997).

From the reaction of Cu^{2+} in NH_{3} with $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$, a molecular copper-nickel complex was isolated, i.e bis $\{$ tetraamminecopper(II)[cis-(dicyano)(μ-dicyano)nickelate(II)] $\}$-cyclo-bis $\{$ trans-diammine[cis-(dicyano)(μ dicyano)nickelate(II)]copper(II), (I). The formation of a discrete complex rather than a coordination polymer was unexpected in view of the known coordination chemistry of $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ anions. Normally, two-dimensional frameworks result (Park \& Iwamoto, 1992, 1993; Yuge \& Iwamoto, 1994; Yuge et al., 1995, 1997). A twodimensional network was also found in the closely related compound $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Ni}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}$ (Miyoshi et al., 1973).

(1)

As shown in Fig. 1, the discrete units of (I), which display $C_{2 h}$ symmetry, are octanuclear and built up from four amminecopper and four tetracyanonickelate moieties. The arrangement may also be viewed as a dimer, with the two molecular parts related by a C_{2} axis or a centre of inversion. Intermolecular contacts between the discrete units are provided by weak hydrogen bonds of the form $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ (Table 2).

The $\mathrm{Ni} / \mathrm{Cu}$ assignment is based on the established stability of the $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ species; this in turn determines the C / N identity. We note that otherwise the neighbouring $\mathrm{Ni} / \mathrm{Cu}$ and C / N elements cannot be distinguished easily by crystallographic means alone.

The $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ anions act as cis bridges between the Cu centres, thereby utilizing two CN groups as donors. There are two types of Cu centres and two types of tetracyanonickelate anions. One type of Cu centre (Cu2) seems at first sight to possess a trigonal-

Fig. 1. An ORTEP-3 (Farrugia, 1997) view of the title compound showing the atom-labelling scheme [symmetry codes: (i) $1-x,-y,-z$; (ii) $x, y,-z]$. Displacement ellipsoids are shown at the 50% probability level and H atoms are shown as spheres of arbitrary radii.
bipyramidal coordination polyhedron of two transammine ligands and three equatorial $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ ligands. Two of these Cu centres form a tetranuclear ring, together with two cis bridging tetracyanonickelate groups (around Ni2). A third $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ group (around Nil) completes the coordination sphere in the equatorial plane. This exocyclic tetracyanonickelate ligand also bridges to a terminal Cu centre. However, a closer inspection reveals that the coordination polyhedron around Cu 2 may be better described as strongly distorted square pyramidal. We use the angular structure parameter $\tau=(\beta-\alpha) / 60$ as a general descriptor of five-coordinate metal centres (β and α are the two largest angles; $\tau=1$ for an ideal trigonal bipyramid and $\tau=0$ for an ideal square pyramid; Addison et al., 1984). For Cu 2 , a value of $\tau=0.32$ is obtained from the angles of $\mathrm{N} 03-\mathrm{Cu} 2-\mathrm{N} 03^{\mathrm{ii}}=171.2(2)^{\circ}$ and of $\mathrm{N} 12^{\mathrm{i}}-$ $\mathrm{Cu} 2-\mathrm{N} 22=152.3(2)^{\circ}$ [symmetry codes: (i) $1-x,-y$, $-z$; (ii) $x, y,-z]$. From this model, the $\mathrm{Cu}-\mathrm{N} 11$ bond would, however, be predicted to be elongated with respect to the other four bonds. This is not the case. None of the five $\mathrm{Cu} 2-\mathrm{N}$ bonds appears to be elongated when compared with their expected range (see below), but the $\mathrm{Cu} 2-\mathrm{N} 22$ bond is peculiar. The $\mathrm{Cu} 2-\mathrm{N} 22-\mathrm{C} 22$ linkage is strongly bent [$128.1(4)^{\circ}$] so that the orbital overlap from the nitrogen lone pair to Cu becomes rather small. This reflects a weak covalent interaction. Unlike the $\mathrm{Cu} 1-\mathrm{N} 31$ bond, however, where the $\mathrm{Cu} 1-\mathrm{N} 31$ C31 linkage is bent to $140.0(4)^{\circ}$, the $\mathrm{Cu} 2-\mathrm{N} 22$ bond remains short. This might be due to either a stronger ionic bonding contribution or an unusual $\mathrm{CN}-\mathrm{Cu} 2 \pi$ overlap. On the other hand, in the structural chemistry
of $\mathrm{Cu}^{\text {II }}$, the potential surface for Cu linkages is known to be very soft and much determined by the crystal environment (Gazo et al., 1976; Jean et al., 1988; Wijnands et al., 1996; Janiak, Scharmann, Günther et al., 1996).
The terminal Cu centre possesses a square-pyramidal coordination polyhedron. The nearest CN groups pointing to the open coordination site of Cul are over $4 \AA$ away. The base of the square pyramid is formed from four ammine ligands and $\mu-\mathrm{NC}-\mathrm{Ni}$ occupies the apical site. This Cul-NC linkage is considerably longer [2.309 (4) \AA] than the Cu 2 - NC bonds (between 2.02 and $2.13 \AA$). This reflects the expected tetragonal distortion of a square-pyramidal coordination sphere for $\mathrm{Cu}^{\mathrm{II}}$. The expected range for $\mathrm{Cu}-\mu-\mathrm{NC}$ is $2.05 \pm 0.13 \AA$ or $1.99 \pm 0.05 \AA$ when excluding those above $2.3 \AA$ (Orpen et al., 1989). Hence, the tetracyanonickelate group around Ni 1 bridges quite unsymmetrically between different Cu centres. The ligand arrangements in both $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$ groups are very close to square planar. Any angular deviations are within 2° of 90 or 180°, respectively. Other metal-ligand distances in (I) are usual. For $\mathrm{Cu}-\mathrm{NH}_{3}$, the expected range is $1.99 \pm 0.02 \AA$, and for terminal $\mathrm{Ni}-\mathrm{CN}$ and for $\mathrm{Ni}-\mu-\mathrm{CN}$, it is $1.86 \pm 0.02 \AA$ (Orpen et al., 1989).

Experimental

The title compound was synthesized from a solution of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(36 \mathrm{mg}, 0.21 \mathrm{mmol})$ in water (7.5 ml) which was overlayered with concentrated ammonia (2 ml) and a solution of $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(50 \mathrm{mg}, 0.21 \mathrm{mmol})$ together with $\mathrm{KCN}(55 \mathrm{mg}, 0.84 \mathrm{mmol})$ in water (2.5 ml). After three weeks,
blue crystals were collected by filtration and washed with cold water and ethanol (yield $28 \mathrm{mg}, 48 \%$). Crystal analysis, IR (KBr): 3368 (m), 3278 (w), $3190(w), 2170(m), 2114(s)$, $1642(b r, w), 1285(w), 1267(s), 1255(m), 1225(w), 693$ (br,s), $428(s) \mathrm{cm}^{-1}$; calculated for $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{CuN}_{7} \mathrm{Ni}: \mathrm{C}$ 17.32, H 3.27 , N 35.35%; found C $17.54, \mathrm{H} 2.89$, N 34.64%.

Crystal data

$\left[\mathrm{Ni}_{4} \mathrm{Cu}_{4}(\mathrm{CN})_{16}\left(\mathrm{NH}_{3}\right)_{12}\right]$
$M_{r}=1109.604$
Orthorhombic
Pnnm
$a=16.8265(13) \AA$
$b=15.7626(13) \AA$
$c=7.2886$ (5) \AA
$V=1933.2(3) \AA^{3}$
$Z=2$
$D_{x}=1.906 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 5000 reflections
$\theta=2.5-27.9^{\circ}$
$\mu=4.113 \mathrm{~mm}^{-1}$
$T=200(2) \mathrm{K}$
Needle
$0.50 \times 0.06 \times 0.04 \mathrm{~mm}$ Blue

Data collection

Stoe IPDS diffractometer
Area-detector scans
Absorption correction:
numerical (X-RED; Stoe
\& Cie, 1995a)
$T_{\text {min }}=0.624, T_{\text {max }}=0.838$
18058 measured reflections
2493 independent reflections

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdot \cdots A$	D-H	H.. A	D. . A	D-H. . A
N02-H12 ${ }^{\text {- }}$ N32 ${ }^{\text {min }}$	0.81 (5)	2.41 (5)	3.203 (5)	165 (4)
$\mathrm{N} 02-\mathrm{H} 22 \cdots \mathrm{~N} 21^{\prime \prime}$	0.81 (4)	2.49 (5)	3.219 (4)	151 (4)
N03-H23. . N41 ${ }^{\text {- }}$	0.82 (4)	2.28 (5)	3.068 (5)	162 (5)
N02-H32 \cdots N $31^{\prime \prime}$	0.80 (4)	2.61 (5)	3.313 (5)	147 (4)
N03-H33...N42 ${ }^{\text {va }}$	0.80 (4)	2.40 (4)	3.201 (5)	170 (4)

Symmetry codes: (iii) $\frac{1}{2}-x, y-\frac{1}{2},-z-\frac{1}{2}$; (iv) $x-\frac{1}{2},-\frac{1}{2}-y,-\frac{1}{2}-z$: (v) $\frac{1}{2}+x,-\frac{1}{2}-y, \frac{1}{2}-z ;$ (vi) $-x,-y, z ;$ (vii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$.

Data are 99.4% complete to $\theta=27.95^{\circ}$. The H atoms of the ammine groups were located in difference syntheses and refined using a common displacement parameter of $0.068(6) \AA^{2}$ and a common restrained $\mathrm{N}-\mathrm{H}$ distance, which refined to $0.805(15) \AA$. There are difference densities of about $1.5 \mathrm{e} \AA^{-3}$ close to Cu and Ni despite a numerical absorption correction.

Data collection: IPDS (Stoe \& Cie, 1995b). Cell refinement: IPDS. Data reduction: IPDS. Program(s) used to solve structure: SIR97 (Cascarano et al., 1996). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEP-3 for Window's (Farrugia, 1997). Software used to prepare material for publication: PLATON (Spek, 1990).

The authors thank the DFG (Grant No. Ja466/10-1), the Fonds der Chemischen Industrie and the graduate college in 'Unpaired electrons' at Freiburg for financial support. The referees provided helpful comments.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1356). Services for accessing these data are described at the back of the journal.

References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.

Cascarano, G., Altomare, A., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Siliqi, D., Burla, M. C., Polidori, G. \& Camalli, M. (1996). Acta Cryst. A52, C-79.

Chui, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G. \& Williams, I. D. (1999). Science, 283, 1148-1150.
Dunbar, K. R. \& Heintz, R. A. (1997). Prog. Inorg. Chem. 45, 283391.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gardner, G. B., Venkataraman, D., Moore, J. S. \& Lee, S. (1995). Nature (London), 374, 792-795.
Gazo, J., Bersuker, I. B.. Garaj, J., Kabesova, M., Kohut, J., Langfelderova, H., Melnik, M., Serator, M. \& Valach, F. (1976). Coord. Chem. Rev. 19, 235-297.
Janiak, C., Scharmann, T. G., Albrecht, P., Marlow, F. \& MacDonald, R. (1996). J. Am. Chem. Soc. 118, 6307-6308.

Janiak, C., Scharmann, T. G., Günther, W., Hinrichs, W. \& Lentz, D. (1996). Chem. Ber. 129, 991-995.

Jean, Y., Lledos, A., Burdett, J. K. \& Hoffmann, R. (1988). J. Am. Chem. Soc. 110, 4506-4516.
Miyoshi, T., Iwamoto, T. \& Sasaki, Y. (1973). Inorg. Chim. Acta, 7, 97-101.
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.
Park, K.-M. \& Iwamoto, T. (1992). J. Chem. Soc. Chem. Commun. pp. 72-74.
Park, K.-M. \& Iwamoto, T. (1993). J. Chem. Soc. Dalton Trans. pp. 1875-1881.

Robson, R., Abrahams, B. F., Batten, S. R., Gable, R. W., Hoskins, B. F. \& Liu, J. (1992). American Chemical Society Symposium Series, No. 499, Supramolecular Architectures, edited by T. Bein. Washington, DC: ACS.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Smith, D. R. (1998). Coord. Chem. Rev. 172, 457-573.
Spek, A. L. (1990). Acta Cryst. A46, C-34
Stoe \& Cie (1995a). X-RED. Data Reduction Program. Version 1.06. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (1995b). IPDS. Imaging Plate Diffractometer System. Stoe \& Cie, Darmstadt, Germany.
Wijnands, P. E. M., Wood, J. S., Reedijk, J. \& Maaskant, W. J. A. (1996). Inorg. Chem. 35, 1214-1222.

Yuge, H. \& Iwamoto, T. (1994). J. Chem. Soc. Dalton Trans. pp. 1237-1242.
Yuge, H., Kim, C.-H., Iwamoto, T. \& Kitazawa, T. (1997). Inorg. Chim. Acta, 257, 217-224.
Yuge, H., Mamada, A., Asai, M., Nishikiori, S. \& Iwamoto, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3195-3205.

Acta Cryst. (1999). C55, 1969-1970

Trierbium digallide trigermanide

Richard Welter and Gerard Venturini
Laboratoire de Chimie du Solide Minéral, UMR 7555,
Université Henri Poincaré Nancy I, Faculté des Sciences, BP 239, 54506 Vandoeuvre les Nancy CEDEX, France.
E-mail: richard.welter@lcsm.u-nancy.fr

(Received 10 June 1999; accepted 2 August 1999)

Abstract

The synthesis and single crystal structure of $\mathrm{Er}_{3} \mathrm{Ga}_{2} \mathrm{Ge}_{3}$ (analysed as $\mathrm{Er}_{3} \mathrm{Ga}_{2.21} \mathrm{Ge}_{2.79}$) are reported. $\mathrm{Er}_{3} \mathrm{Ga}_{2} \mathrm{Ge}_{3}$ is isotypic with $\mathrm{Pu}_{3} \mathrm{Pd}_{5}$.

Comment

The title compound, $\mathrm{Er}_{3} \mathrm{Ga}_{2} \mathrm{Ge}_{3}$, is isotypic with $\mathrm{Pu}_{3} \mathrm{Pd}_{5}$ (Cromer, 1976). Until now, this structural type has been mainly reported for $R_{3} \mathrm{In}_{5}$ and $R_{3} \mathrm{Tl}_{5}$ compounds ($R=$ lanthanide elements; Villars \& Calvert, 1991). In the Er- $\mathrm{Ga}-\mathrm{Ge}$ system investigated by us at 1173 K , $\mathrm{Er}_{3} \mathrm{Ga}_{2} \mathrm{Ge}_{3}$ is in equilibrium with the $\mathrm{Tm}_{3} \mathrm{Ga}_{5}$-type compound $\mathrm{Er}_{3} \mathrm{Ga}_{3} \mathrm{Ge}_{2}$ (Yatsenko et al., 1983) and with the defect AlB_{2}-type compound $\mathrm{Er}_{36} \mathrm{Ga}_{17} \mathrm{Ge}_{47}$. The $\mathrm{Pu}_{3} \mathrm{Pd}_{5}$ structure is closely related to the $\mathrm{Tm}_{3} \mathrm{Ga}_{5}$-type structure (Yatsenko et al., 1983). The evolution of the structure as a function of the Ga content is not well understood.

Fig. 1. View of the asymmetric unit of $\mathrm{Er}_{3} \mathrm{Ga}_{2} \mathrm{Ge}_{3}$. Displacement ellipsoids are shown at the 99% probability level.

The refinement of the occupancy factors of the Ga and Ge sites leads us to assume that the Ga 5 and Ge 6 sites are fully occupied by Ga and Ge atoms, respectively. The occupancy factor of the ($\mathrm{Ge} 3, \mathrm{Ga} 4$) site suggests a mixture of Ge and Ga atoms on this site. In spite of the close scattering factors of Ge and Ga atoms, the chemical formula deduced from the results of the refinements ($\mathrm{Er}_{37.5} \mathrm{Ge}_{34.9} \mathrm{Ga}_{27.6}$) is in good agreement with that measured by microprobe analysis.

Experimental

Crystals of the title compound were extracted from an $\mathrm{Er}_{25} \mathrm{Ga}_{20} \mathrm{Ge}_{55}$ ingot annealed at 1173 K for one week. The microprobe analysis of the crystals gives the following composition: Er 37 (1), Ga 27 (1) and Ge 36 (1) atom\%.

Crystal data

$\mathrm{Er}_{3} \mathrm{Ga}_{2.21} \mathrm{Ge}_{2.79}$
$M_{r}=858.99$
Orthorhombic
Cmcm
$a=9.2880(6) \AA$
$b=7.4180$ (7) \AA
$c=9.3830(4) \AA$
$V=646.47(8) \AA^{3}$
$Z=4$
$D_{x}=8.826 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Nonius KappaCCD diffractometer
Oscillations scan
Absorption correction:
empirical (SORTAV;
Blessing, 1987)
$T_{\text {min }}=0.090, T_{\text {max }}=0.109$
3631 measured reflections
423 independent reflections
$\mathrm{Ag} K \alpha$ radiation
$\lambda=0.56090 \AA$
Cell parameters from 176 reflections
$\theta=0.64-23.58^{\circ}$
$\mu=32.069 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Parallelepiped
$0.08 \times 0.07 \times 0.07 \mathrm{~mm}$
Metallic grey

358 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.063$
$\theta_{\text {max }}=21.34^{\circ}$
$h=-11 \rightarrow 12$
$k=-9 \rightarrow 9$
$l=-12 \rightarrow 12$

