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A Poisson Process

Experiments that result in counting the number of 
events in a given time or in a given object can be 
described by a Poisson process provided:  
a) Number changes on nonoverlapping intervals are 
independent.

b) The probability of exactly one change occurring in a 
sufficiently short interval of length h is approximately λh

c) The probability of two or more changes in a sufficiently 
short interval is essentially zero.

e.g. Fluctuations in molecular number in a small volume.
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The First FCS Measurement

Observation of gold colloids using an ultra-microscope 
(Svedberg and Inouye, Zeitschr f. Physik Chemie 1911,
77:145-119)

Measurement of the Equilibrium Thermodynamic 
Fluctuations in Molecular Number
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The First FCS/PCH Measurement
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Svedberg and Inouye, Zeitschr f. Physik Chemie
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Experimental Setup
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Typical FCS setups use either a 
confocal geometry or 

two-photon        
excitation



Data Acquisition
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Advantageous for average 
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count per bin 

Advantageous for average 
count rates lower than 1 
count per bin 



Autocorrelation Analysis
Freely diffusing, non-
interacting particles in an 
open volume.

Photon are not detected 
stochastically, but in bursts 
when a molecule transverses 
the probe volume.

We can determine:
Excited state lifetime
Rotational Diffusion Constant
Triplet-State Lifetime
Triplet-State Amplitude
Translational Diffusion Constant
Concentration
Molecular Brightness

Schematic Autotcorrelation Function:
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Analysis Techniques

The autocorrelation function is one of many 
techniques to analyze the data
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Other Analysis Approaches Include:

Histogram Analysis

Multidimensional Analysis
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Autocorrelation Analysis
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The normalized autocorrelation function (ACF) is given by:
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For processes that are:

Stationary:  i.e. the average parameters do not 
change with time

the ACF is independent of the absolute time

Ergodic: i.e. every sizeable sampling of the process 
is representative of the whole

the time average is equal to the ensemble average

)()()( tAtAtA −=δwhere

Occasionally in the literature, the ACF is defined as: 
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A(t)

Time t

τ

Properties of the Autocorrelation Function

G(τ) has maximum at G(0)
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The autocorrelation function (ACF) measures the self 
similarity of the observable A as a function of τ



Properties of the Autocorrelation Function

For non-conserved, non-periodic signals

G(τ) → 0 as τ → ∞

The amplitude is proportional to the size of the 
fluctuations
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G(τ) is the probability distribution of detecting a 
photon at delay τ when a photon was  detected at τ = 0



Autocorrelation Function, Single Species

),()()( tCWdQtF rrr∫= κ

Where κ is the detection efficiency

Q = σφ ;       Effective Quantum Yield

W(r) = In(r)S (r)Χ (r) ;  Probe Volume 

In(r) = laser intensity profile
for n-photon excitation

S(r) = Sample extent

Χ(r) = Detection efficiency

C(r,t) = Number Density

The fluorescence intensity is given by:

The ACF is given by:
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Point-Spread Functions (PSF)

1-photon excitation, confocal detection:

Approximate the PSF by a 3 dimensional Gaussian

2-photon excitation:

Approximate the PSF by the expression for the 
Gaussian Beam Waist of the laser:
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where wr and  wz the radial and axial distance from the 
center to where the intensity has decayed by (1/e)2

respectively
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w0 is the beam waist and λ is the excitation laser 
wavelength

where
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The PSF is the measured fluorescence intensity of a point 
particle at the position r within the excitation volume



Autocorrelation Function, Single Species
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For a freely diffusing species:
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For a 3-Dimensional Gaussian Probe Volume:
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Autocorrelation Function, Single Species
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Freely Diffusing Particles with Flow
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For flow (or scanning) in the y 
direction in a 3-Dimensional 
Gaussian Probe Volume :
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Gamma Factor

)0(

)0()(

),()()(

QW

WdQ

tCWdQtF

κ

δκ

κ

=

=

=

∫
∫

rr

rrr

For a single particle fixed at the center of the PSF:

The fluorescent intensity is given by:

For molecules freely diffusing in solution:
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We define the molecular brightness as ε = κQW(0)
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Veff is the volume of uniform illumination at maximum 
intensity that yields the same overall detection rate

Hence the molecular brightness can be determined from 
the ACF and the average intensity

NF=ε



Gamma Factor
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Afterpulsing
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The amplitude of the Autocorrelation Function is 
inversely proportional to the intensity 

A Power Law is used to empirically fit the afterpulsing
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Signal-to-Noise Considerations

High Intensity Limit:

Uncertainty dominated by number of fluctuations:

Low Intensity Limit:

Uncertainty dominated by number of photons:
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where texp is the measurement time of the 
experiment and τC is the correlation time 
of the fluctuations

Only possibilities to improve the S/N ratio are: 
extend the measurement time
increase the counts per molecule second
change the geometry

S/N is independent of sample concentration!!!



Limitations

Time Scale:  ns/µs → ms/s/hrs

Early time limit:
Detector afterpulsing (100 ns  - 5 µs)
Detector deadtime: (2 ns - 30 ns)
Numbers of available photons:  (10 ns - 100 ns)

Long time limit:
Time molecule remains in the excitation volume

(Typically ~ 1 ms)

Increase the long time limit by:
Increasing the excitation volume:  (10 ms)
Place sample in viscous solvents or gels:  (s)

Slow reactions can be measured by changes in the 
autocorrelation function with time.  (hrs)

Concentration Limits:  ~ 1 µM → 10 pM

Maximum Concentration: (1 µM)
The change in signal from thermodynamic

fluctuations becomes comparable to other sources
of noise in the system

Minimum Concentration:  (10 pM)
Limit statistics
Impurities


