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A Poisson Process

Experiments that result in counting the number of
events in a given time or in a given object can be
described by a Poisson process provided:

a) Number changes on nonoverlapping intervals are
independent.

b) The probability of exactly one change occurring in a
sufficiently short interval of length h is approximately Ah

c) The probability of two or more changes in a sufficiently
short interval is essentially zero.

e.g. Fluctuations in molecular number in a small volume.
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The First FCS Measurement

Observation of gold colloids using an ultra-microscope
(Svedberg and Inouye, Zeitschr f. Physik Chemie 1911,
77:145-119)

Measurement of the Equilibrium Thermodynamic
Fluctuations in Molecular Number
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The First FCS/PCH Measurement

Svedberg and Inouye, Zeitschr f. Physik Chemie
1911, 77:145-119
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Experimental Setup

Typical FCS setups use either a
confocal geometry or

two-photon
excitation
Sample
\
Piezo — O
Stage
— Objective
Ar-Kr lon Laser
) ) Confocal
Dichroic Pinhole

Mirror —_—

O|D|

™~
L
[U'U:D |




Data Acquisition

1.2

Photon Counts 1-
® 0.8
O APD |e— § 0.6 -
O 0.4
0.2

0

Counter
Clock =

2 0.8 A
EQ 0.6
< 0.4

0.2

Time Mode

Signal

0 APD

@ Sync

Advantageous for average
count rates higher than 1
count per bin

Counter

0

T
20

T
40

1 T
60 80 100

Time

Hardware
Correlator

Hard Disk Software

Correlator

20

40

60 80 100

Time

@ Signal

Photon Mode

Counter

APD

Sync

Advantageous for average
count rates lower than 1
count per bin



1.6-
1_4—-
1.2 -
1_0—-
'D_B—_
'D_G—-
0_4—-

0_2—-

Autocorrelation Amplitude

0.0

Autocorrelation Analysis

e Freely diffusing, non-
R Interacting particles in an
] open volume.

Photon are not detected

7 stochastically, but in bursts
when a molecule transverses
the probe volume.

Schematic Autotcorrelation Function:

From: Schwille, Haustein,

Fluorescence Correlation
Rotational Fluctuations Spectroscopy, In: Single Molecule
Techniques, Biophysics Textbook
Online
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We can determine:

Rotational Diffusion Constant
Triplet-State Lifetime
Triplet-State Amplitude
Translational Diffusion Constant
Concentration

Molecular Brightness
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Analysis Techniques

The autocorrelation function is one of many

techniques to analyze the data

Other Analysis Approaches Include:

Histogram Analysis
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Autocorrelation Analysis

The normalized autocorrelation function (ACF) is given by:

6 (r) - (A(t)A(t+ r)>2— (A1)
(A (1))

_ (SA(t)SA(t+ 7))
(A1)’

where  sA(t) = A(t) - (A(t))

For processes that are:

Stationary: 1.e. the average parameters do not
change with time

the ACF is independent of the absolute time

Ergodic: i.e. every sizeable sampling of the process
IS representative of the whole

the time average is equal to the ensemble average

(SA(t)SA(t+ 7)) _ (SA(0)5A (7))

(A1) (A)
Occasionally in the literature, the ACF is defined as:

g(r) = <A(t)A(t+r)>




Properties of the Autocorrelation Function

The autocorrelation function (ACF) measures the self
similarity of the observable A as a function of t
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Properties of the Autocorrelation Function

The amplitude is proportional to the size of the
fluctuations ,

_ (A (0)S5A(0)) _ Zl (Ai B <A>)2/f

(B

c;(0)=‘72

G (0)

2

For non-conserved, non-periodic signals

G(t) >0ast—> w

G(7) is the probability distribution of detecting a
photon at delay zwhen a photon was detected at 7=0

230 pM Rhodamine 6G in buffer
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Autocorrelation Function, Single Species

The fluorescence intensity is given by:
F(t)= Kdervv(r)C(r,t)
Where « is the detection efficiency
Q=oc¢;  Effective Quantum Yield
W(r) = 1"(r)S (r).X (r) ; Probe Volume

I"(r) = laser intensity profile
for n-photon excitation

S(r) = Sample extent
X(r) = Detection efficiency
C(r,t) = Number Density

The ACF is given by:
OF (0)5F (7))

(F)

j j drdr'W (r)W (r')(5C (r, 7)3C (r',0))

G(r)z<

G(r) =

RCH drW (r)}2



Point-Spread Functions (PSF)

The PSF is the measured fluorescence intensity of a point
particle at the position r within the excitation volume

1-photon excitation, confocal detection:

Approximate the PSF by a 3 dimensional Gaussian

W (x,y,z)=1,(0,0,0)exp {— 2(X2vv+2 yz)— 222}

W2

z

where w, and w, the radial and axial distance from the
center to where the intensity has decayed by (1/e)?
respectively

2-photon excitation:

Approximate the PSF by the expression for the
Gaussian Beam Waist of the laser:

1 (x,y,2) = 'o(O’O’O)V\/\gl—zo)zexp {_ 2(\):\,(;)2' )}

-

W, is the beam waist and A is the excitation laser
wavelength

W (x,y,2z) = IOZ(O,O,O)V\I\’V—g4exp {— 4(X2 i yz)}

(z) w(z)’



Autocorrelation Function, Single Species

For a freely diffusing species: %ﬁrt) _ DVZéC(r,t)

&(r,t)= Idp e® 5, (p,t)

Gétgir,t) = [dpe®r t-Dp* (p, 1)}

a(r.t)= [dp e, (p0)e ™"
(&(r,t)SC(r',0)) = J.dp QP {<6Cf (p.0)C(r ’0)>e—Dp2t }

_ jdp eip.r{i."drn eip‘r"<5C(l'",0)5C(l",O)>eDpzt}
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(et
(& (r,t)aC(r',0)) = (453)2 e [ o J
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For a 3-Dimensional Gaussian Probe Volume:
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Autocorrelation Function, Single Species

Gy (r,N,7p) =~ : ; %
PP NV e e )1+ (w, w, Ve 7

230 pM Rhodamine 6G in buffer
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Freely Diffusing Particles with Flow

For flow (or scanning) in the y
direction in a 3-Dimensional
Gaussian Probe VVolume :
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Gamma Factor
For a single particle fixed at the center of the PSF:
C(r,t) =5(0)
The fluorescent intensity is given by:
F(t) = xQ[ drW (r)C(r,t)
= kQ j dr W (r)5(0)
=xQW (0)

We define the molecular brightness as & = kxQW(0)
For molecules freely diffusing in solution:

(F©)=&(N)

_ W(r)
_ <gjdr WO C(r,t)>

W(r)
5<C>I dr W (0)

5<C>Veff
_ v (e WD)
(N)=(CW,q; Vi _jdrw(o)

V.« is the volume of uniform illumination at maximum
intensity that yields the same overall detection rate

Hence the molecular brightness can be determined from
the ACF and the average intensity

e=(F)/{N)



Gamma Factor
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Afterpulsing

Autocorrelation from Reflected Laser Light
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The amplitude of the Autocorrelation Function is
inversely proportional to the intensity

A Power Law is used to empirically fit the afterpulsing
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Signal-to-Noise Considerations

High Intensity Limit:

Uncertainty dominated by number of fluctuations:

S_~ texp A
N T

where t,,, Is the measurement time of the

experiment and . is the correlation time
of the fluctuations

Low Intensity Limit:

Uncertainty dominated by number of photons:

S 1 y
N_~ (teXp )/IT <N>
I, = (N )
z—z(texp )%87

Only possibilities to improve the S/N ratio are:
extend the measurement time
Increase the counts per molecule second
change the geometry

S/N is independent of sample concentration!!!



Limitations

Time Scale: ns/us —» ms/s/hrs

Early time limit:
Detector afterpulsing (100 ns - 5 us)
Detector deadtime: (2 ns - 30 ns)
Numbers of available photons: (10 ns - 100 ns)

Long time limit:
Time molecule remains in the excitation volume
(Typically ~ 1 ms)

Increase the long time limit by:
Increasing the excitation volume: (10 ms)
Place sample in viscous solvents or gels: (s)

Slow reactions can be measured by changes in the
autocorrelation function with time. (hrs)

Concentration Limits: ~1 uM — 10 pM

Maximum Concentration: (1 uM)

The change in signal from thermodynamic
fluctuations becomes comparable to other sources
of noise in the system

Minimum Concentration: (10 pM)
Limit statistics
Impurities



