The Fundamentals of Fluorescence Spectroscopy III:

Multidimensional Analysis

Don C. Lamb

Department of Physical Chemistry

Time-Gated FCS

How can we enhance the capabilities of FCS?

Use Multidimensional Analysis

Select photons for analysis based upon photon properties

Time-Gated FCS

Use delay between the excitation pulse and fluorescence emission to discriminate between photons based upon their duration in the excited state

Removal of Fluorescent Background

Multiple Species Discrimination

Check sample inhomogeneity

$$G(0)_{eff} = \mathfrak{I}_1^2 G_1(0) + \mathfrak{I}_2^2 G_2(0)$$

where \Im_i is the relative intensity of the *i*th species

If sample contains multiple lifetime species, G(0) will depend upon gate duration

MetMb stochastically labeled with TMR

TMR labeled close to the heme is quenched

Static versus Dynamic Heterogeneity

Is the heterogeneity static or dynamic?

For non-interacting species:

For unimolecular reaction:

Amplitude changes with gate duration

Amplitude of the relaxation will vary with gate duration

$$G(\tau) = \left(\frac{\mathfrak{Z}_1^2}{N_1} + \frac{\mathfrak{Z}_2^2}{N_2}\right) \qquad G(\tau) = \left\{1 + K\left(\mathfrak{Z}_1 - \frac{\mathfrak{Z}_2}{K}\right)^2 e^{-k_r \tau}\right\} \\ \times G_{Diff}\left(1, D, \tau\right) \qquad \times G_{Diff}\left(N_1 + N_2, D, \tau\right)$$

Ratio measurements with and without gate!

Note*: Ratio analysis is sensitive to offsets in the ACF due to laser instabilities, vibrations, bleaching . . .

Enhancement of FCS

Are FCS measurements Enhanced by Time-Gating?

Signal-to-Noise Considerations:

High Intensity Limit:

Uncertainty dominated by number of fluctuations: Loss of photons by gating unimportant

Low Intensity Limit:

Uncertainty dominated by number of photons: Signal-to-noise is proportional to $I_T G(0)$ (both I_T and G(0) depend on the gate width)

Calculation of the S/N vs Gate Width for a mixture of TMR and ANS with Equal Fluorescence Intensities

Type of Experiment	Beamsplitting Optics	Channel 1	Channel 2
Fast Correlation	50/50	50% of the total	The remaining
Measurements	Beamsplitter	Signal	Signal
Two-Color Experiments	Dichroic Mirror	Green Photons	Red Photons
Polarization	Polarizing	⊥ Polarized	Polarized light
Measurements	Beamsplitter	light	

Cross-Correlation Spectroscopy

Two-Channel Detection

$$F_1(t) = \kappa_1 Q_1 \int d\mathbf{r} \ W(\mathbf{r}) C_1(\mathbf{r}, t)$$
$$F_2(t) = \kappa_2 Q_2 \int d\mathbf{r} \ W(\mathbf{r}) C_2(\mathbf{r}, t)$$

$$G_{ij}(\tau) = \frac{\left\langle \delta F_i(t) \delta F_j(t+\tau) \right\rangle}{\left\langle F_i(t) \right\rangle \left\langle F_j(t) \right\rangle}$$

$$G_{ij}(\tau) = \frac{\iint d\mathbf{r} d\mathbf{r}' W(\mathbf{r}) W(\mathbf{r}') \left\langle \delta C_i(\mathbf{r}, \tau) \delta C_j(\mathbf{r}', 0) \right\rangle}{\left\langle C_i \right\rangle \left\langle C_j \right\rangle \left[\int d\mathbf{r} W(\mathbf{r}) \right]^2}$$

The product $\langle \delta C_i(\mathbf{r}, \tau) \delta C_j(\mathbf{r'}, 0) \rangle$ is only non-zero if *i* and *j* are the same particle or if they diffuse together.

$$G_{ij}(\tau) = \frac{\left\langle N_{ij} \right\rangle \gamma}{\left\langle N_i \right\rangle \left\langle N_j \right\rangle} \left(\frac{1}{1 + \tau / \tau_{D_{ij}}} \right) \left(\frac{1}{1 + \left(w_r / w_z \right)^2 \tau / \tau_{D_{ij}}} \right)^{\frac{1}{2}}$$

Fast Cross-Correlation Spectroscopy

$$N_1 = N_2 \rightarrow G_{1,2}(\tau) = \frac{\langle N \rangle G_D(1, D, \tau)}{\langle N \rangle \langle N \rangle} = G_D(N, D, \tau)$$

Same information as ACF, but without detector artifacts

Signal-to-noise considerations:

The S/N ratio is proportional to molecular brightness, ε

$$\epsilon_{CCF} \rightarrow \epsilon_{ACF}/2$$

(S/N)_{CCF} = (S/N)_{ACF}/2

For symmetric CCFs,

$$G_{1,2}(\tau) = G_{2,1}(\tau),$$

and the S/N ratio of the total CCF, $\{G_{1,2}(\tau) + G_{2,1}(\tau)\}/2$, is $\sqrt{\frac{1}{2}}$ that of the ACF

Fast Cross-Correlation Spectroscopy

Compensation for detector dead time and removal of afterpulsing artifacts

The sample consists of three species, N_G , N_R , and N_{GR} Ideally, only the N_{GR} cross correlate

$$G_{GR}(\tau) = \frac{N_{GR} G_D(1, D_{GR}, \tau)}{\langle N_G + N_{GR} \rangle \langle N_R + N_{GR} \rangle}$$

Amplitude is *proportional* to concentration of $N_{GR}!!!$

Two-Color Cross-Correlation Spectroscopy

Labeled double stranded DNA

Rhodamine Green

Reaction of restriction endonuclease *Eco*RI with dsDNA

Kettling, Koltermann, Schwille, Eigen PNAS (1998) 95:1416

Spectral Cross Talk

Multiple Molecular Brightnesses

- $\epsilon_{G,GG}$, $\epsilon_{G,GR}$: Brightness of the Green dye with Green Excitation in the Green and Red channels
- $\epsilon_{R,GG}$, $\epsilon_{R,GR}$: Brightness of the Red dye with Green Excitation in the Green and Red channels
- $\epsilon_{G,RG}, \epsilon_{G,RR}$: Brightness the Green dye with Red Excitation in the Green and Red channels
- $\epsilon_{R,RG}$, $\epsilon_{R,RR}$: Brightness of the Red dye with Red Excitation in the Green and Red channels

Typically, $\varepsilon_{\mathbf{R},GG} = \varepsilon_{\mathbf{R},\mathbf{R}G} = 0$; The Red dye does not fluoresce in the Green channel

 $\epsilon_{G,RG} = \epsilon_{G,RR} = 0$; The Green dye does not absorb Red excitation

Spectral Cross Talk

Assuming three species, C_G , C_R , and C_{GR} , where the double labeled molecules have the properties of both of the Red and Green molecules, we have:

$$F_{G}(t) = \int d\mathbf{r} W_{G}(\mathbf{r}) \Big[\varepsilon_{G,GG} \Big(C_{G}(\mathbf{r},t) + C_{GR}(\mathbf{r},t) \Big) \Big]$$

$$F_{R}(t) = \int d\mathbf{r} W_{G}(\mathbf{r}) \Big(\varepsilon_{G,GR} C_{G}(\mathbf{r},t) + \varepsilon_{R,GR} C_{R}(\mathbf{r},t) + \Big(\varepsilon_{G,GR} + \varepsilon_{R,GR} \Big) C_{GR}(\mathbf{r},t) \Big)$$

$$+ \int d\mathbf{r} W_{R}(\mathbf{r}) \varepsilon_{R,RR} \Big(C_{R}(\mathbf{r},t) + C_{GR}(\mathbf{r},t) \Big)$$

For identical probe volumes

$$F_{G}(t) = \int d\mathbf{r} W(\mathbf{r}) \Big[\varepsilon_{G,GG} \Big(C_{G}(\mathbf{r},t) + C_{GR}(\mathbf{r},t) \Big) \Big]$$

$$F_{R}(t) = \int d\mathbf{r} W(\mathbf{r}) \Big[\varepsilon_{G,GR} C_{G}(\mathbf{r},t) + \Big(\varepsilon_{R,GR} + \varepsilon_{R,RR} \Big) C_{R}(\mathbf{r},t) \Big)$$

$$+ \Big(\varepsilon_{G,GR} + \varepsilon_{R,GR} + \varepsilon_{R,RR} \Big) C_{GR}(\mathbf{r},t) \Big]$$

$$G_{GR}(\tau) = \Im_{G}^{R} \frac{\gamma}{\langle N_{G} + N_{GR} \rangle} \Bigg(\frac{1}{1 + \tau/\tau_{D_{G}}} \Bigg) \Bigg(\frac{1}{1 + (w_{r}/w_{z})^{2} \tau/\tau_{D_{G}}} \Bigg)$$

$$+ \Im_{GR}^{R} \frac{\gamma}{\langle N_{G} + N_{GR} \rangle} \Bigg(\frac{1}{1 + \tau/\tau_{D_{GR}}} \Bigg) \Bigg(\frac{1}{1 + (w_{r}/w_{z})^{2} \tau/\tau_{D_{GR}}} \Bigg)$$

The terms add linearly with the fractional intensity!

Non-Aligned Volumes

For two concentric probe volumes of different dimensions:

$$W_{G}(\mathbf{r}) = I_{0} \exp\left[-\frac{2\left(x^{2} + y^{2}\right)}{w_{r_{G}}^{2}} - \frac{2z^{2}}{w_{z_{G}}^{2}}\right]$$
$$W_{R}(\mathbf{r}) = I_{0} \exp\left[-\frac{2\left(x^{2} + y^{2}\right)}{w_{r_{R}}^{2}} - \frac{2z^{2}}{w_{z_{R}}^{2}}\right]$$
$$F_{G}(t) = \int d\mathbf{r} W_{G}(\mathbf{r}) \left[\varepsilon_{G,GG} \left(C_{G}(\mathbf{r},t) + C_{GR}(\mathbf{r},t)\right)\right]$$
$$F_{R}(t) = \int d\mathbf{r} W_{G}(\mathbf{r}) \left(\varepsilon_{G,GR} C_{G}(\mathbf{r},t) + \varepsilon_{R,GR} C_{R}(\mathbf{r},t) + \left(\varepsilon_{G,GR} + \varepsilon_{R,GR}\right) C_{GR}(\mathbf{r},t)\right)$$
$$+ \int d\mathbf{r} W_{R}(\mathbf{r}) \varepsilon_{R,RR} \left(C_{R}(\mathbf{r},t) + C_{GR}(\mathbf{r},t)\right)$$

The CCF is given by:

$$\begin{split} G_{GR}(\tau) &= \Im_{G}^{R} \frac{\gamma}{V_{eff} \langle C_{G} + C_{GR} \rangle} \Biggl(\frac{1}{1 + \tau / \tau'_{D_{G}}} \Biggr) \Biggl(\frac{1}{1 + (w_{r} / w_{z})^{2} \tau / \tau'_{D_{G}}} \Biggr) \\ &+ \Im_{GR}^{R} \frac{\gamma}{V_{eff} \langle C_{G} + C_{GR} \rangle} \Biggl(\frac{1}{1 + \tau / \tau'_{D_{GR}}} \Biggr) \Biggl(\frac{1}{1 + (w_{r} / w_{z})^{2} \tau / \tau'_{D_{GR}}} \Biggr) \\ &V_{eff} = \Biggl(\frac{\pi}{4} \Biggr)^{\frac{3}{2}} \Biggl(w_{r_{G}}^{2} + w_{r_{R}}^{2} \Biggr) \Biggl(w_{z_{G}}^{2} + w_{z_{R}}^{2} \Biggr)^{\frac{1}{2}} \\ &\tau'_{D_{i}} = \frac{\Biggl(w_{r_{G}}^{2} + w_{r_{R}}^{2} \Biggr)}{8D_{i}} \end{split}$$

The CCF for G_{xxy} and G_{xyx} are Asymmetric!!

Rotational Diffusion

Orientation of the fluorophore must be incorporated.

Absorption and detection efficiency depend upon the polarization:

$$\sigma(t) = A^2(\mathbf{\Omega}(t)) = 3(\hat{\mathbf{\mu}}_{\mathbf{a}} \cdot \hat{\mathbf{a}})^2$$
$$\kappa(t) = E^2(\mathbf{\Omega}(t)) = 3(\hat{\mathbf{\mu}}_e \cdot \hat{\mathbf{e}})^2$$

The probability of a molecule absorbing a photon at t_1 , emitting the first photon at t_2 , absorbing a second photon at t_3 , and emitting a second photon at t_4 is:

where $F'(\mathbf{Q}(t))$ includes all non-orientation properties of the fluorophore (e.g. position, electronic state, chemical state, ...)

Assuming Ω and Q are independent:

$$\widetilde{G}(t_1, t_2, t_3, t_4) = \left\langle A^2 \big(\mathbf{\Omega}(t_1) \big) E^2 \big(\mathbf{\Omega}(t_2) \big) A^2 \big(\mathbf{\Omega}(t_3) \big) E^2 \big(\mathbf{\Omega}(t_4) \big) \right\rangle$$
$$\left\langle F_a^{'} \big(\mathbf{Q}(t_1) \big) F_e^{'} \big(\mathbf{Q}(t_2) \big) F_a^{'} \big(\mathbf{Q}(t_3) \big) F_e^{'} \big(\mathbf{Q}(t_4) \big) \right\rangle$$

Rotational Diffusion

The normal autocorrelation function measures the probability of measuring a second photon with a delay τ

Define $t_2 = 0$ and $t_4 = \tau$ $\widetilde{G}(\tau) = \int_{-\infty}^{0} dt_1 \int_{t_1}^{\tau} dt_3 \langle A^2(\mathbf{\Omega}(t_1)) E^2(\mathbf{\Omega}(0)) A^2(\mathbf{\Omega}(t_3)) E^2(\mathbf{\Omega}(\tau)) \rangle$ $\langle F_a'(\mathbf{Q}(t_1)) F_e'(\mathbf{Q}(0)) F_a'(\mathbf{Q}(t_3)) F_e'(\mathbf{Q}(\tau)) \rangle$

Assuming an mono-exponential decay of lifetime τ_{fl} and taking the limit as $\tau_{fl} \rightarrow 0$ (*i.e.* we are interested in t >> τ_{fl}), we obtain:

$$\widetilde{G}(\tau) = \left\langle F_a'(\mathbf{Q}(0))F_a'(\mathbf{Q}(\tau))\right\rangle \left[1 - e^{-\tau/\tau_{fl}}\right] \\ \left\langle A^2(\mathbf{\Omega}(0))E^2(\mathbf{\Omega}(0))A^2(\mathbf{\Omega}(\tau))E^2(\mathbf{\Omega}(\tau))\right\rangle$$

Assuming the excitation and absorption dipoles are equivalent (*i.e.* $\mu_a = \mu_e = \mu$) and molecule is a rigid sphere undergoing rotational diffusion:

$$\widetilde{G}(\tau) \approx \left\langle F_{a}(0)F_{a}(\tau)\right\rangle \left[1 - e^{-\tau/\tau_{fl}}\right] \left(1 + c_{1}e^{-6\theta\tau} + c_{2}e^{-20\theta\tau}\right)$$

or more precisely:

$$\widetilde{G}(\tau) = \left\langle F_{a}'(0)F_{a}'(\tau)\right\rangle \left[1 - e^{-\tau/\tau_{fl}} \left(\sum_{\ell} B_{\ell}(\hat{\mathbf{a}}, \hat{\mathbf{e}}_{1}, \hat{\mathbf{e}}_{2}) e^{-\ell(\ell+1)\theta\tau}\right)\right]$$

where

$$B_{\ell}(\hat{\mathbf{a}}, \hat{\mathbf{e}}_{1}, \hat{\mathbf{e}}_{2}) = \sum_{m=-\ell}^{\ell} \frac{81}{4\pi} \int d\mu_{1} \int d\mu_{2} (\hat{\mu}_{1} \cdot \hat{\mathbf{a}})^{2} (\hat{\mu}_{1} \cdot \hat{\mathbf{e}}_{1})^{2} (\hat{\mu}_{2} \cdot \hat{\mathbf{a}})^{2} (\hat{\mu}_{2} \cdot \hat{\mathbf{e}}_{2})^{2} Y_{\ell m}(\mu_{1}) Y_{\ell m}^{*}(\mu_{2})$$

and the $Y_{\ell m}(\mu)$ are the spherical harmonics