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Amplitude Fluctuations

Svedberg and Inouye, Zeitschr f. Physik Chemie 1911, 77:145-119
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=For a Poisson Distribution:

Poissonian Statistics

super-Poissonian Statistics

sub-Poissonian Statistics
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A photon counting histogram analysis investigates 
the amplitude of the fluctuations

The measured probability function for 
detecting N photons in a time bin is a 
renormalization of the histogram of the 
photon counting data.
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Photon Counting Statistics

The number of detected photons from a constant intensity 
light source is governed by Poisson statistics
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where: k is the number of detected photons

〈k〉 = ηE E is the average number of detected photons

ηE is the detection efficiency

E is the energy impinging on the detector

e.g. A non-diffusing 500 nm fluorescent bead in the 
excitation volume:

From: Chen et al. 1999 
Biophys J 77:553



Mandel’s Formula

For a fluctuating intensity source, the photon counting 
distribution is given by Mandel’s formula:

Mandel, Proc. Phys. Soc. (1958) 72:1037-1048
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where: P(E(t,T)) is the energy probability distribution

T is the integration time of the measurement
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where: ID is the intensity reaching the detector
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Effect of binning:

For T 0:  power fluctuations tract intensity fluctuations

For T ∞:  intensity fluctuations average out, 

p(E) δ(E – 〈E〉)

Choose T small enough to tract intensity fluctuations:

E(t) = ID(t)T

where: ηI = ηET



Diffusing Particle in a Confocal Volume
ID depends upon the position of the particle 

The PSF gives the measured fluorescence intensity of a point 
particle at the position r within the probe volume
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The intensity at the detector from a fluorophore at 
position r is given by:

where n = number of absorbed photons per excitation      
β includes corresponding scale factors between 
excitation and detection intensity

We define the Molecular Brightness to be the measured 
intensity of a molecule at the center of the PSF:
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PCH for Particles in a Box

For multiple particles in a box:
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The expression can also be written as a convolution:
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The probability of detecting k photons from a single molecule 
in a box of volume V0 is given by:
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The average count rate is:



PCH in an Open Volume

The probability of having N particles in the subvolume V0 is 
given by:

Particles can enter and leave the subvolume V0
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The probability of observing k photons is given by the 
product of the probability of observing k photons 
with N particles in the volume multiplied by the 
probability of having N particles in the volume:
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Information available from analysis:

Two key assumptions for PCH:

1) The molecule does not move significantly during 
a time bin

2) The molecular brightness is constant in time and 
follows the spatial profile of the excitation 
volume (no reactions, photophysics, etc . . .) 
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PCH versus Concentration

At high concentration, Poission statistics dominate

The super-Poisson nature of the distribution is seen in the tail 
of lower concentration measurements

Fits to Poisson distribution

From: Chen et al. 1999 
Biophys J 77:553



PCH versus Concentration
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Determination of 〈NPSF〉 and ε by fitting to the probability 
function
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From: Chen et al. 1999 
Biophys J 77:553



PCH versus ε

The brighter the molecule, the more clearly the non-
Poissonian statistics are observable

From: Chen et al. 1999 
Biophys J 77:553



Bright, Slow Molecules

PCH vs Concentration
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Fluorescent Intensity Distribution Analysis

The number of photons for a single species in a small volume 
element is given by:
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The total probability function is given by the convolution of 
all of the small volume elements
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This leads to a large number of convolutions that is 
numerically ‘clumsy and slow’ to calculate

The differences between PCH and FIDA are:

1) Treatment of the excitation volume

2) Mathematical approach
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FIDA

The generating function has the following properties:

1) Under certain conditions, the generating function 
completely determines the distribution

2) The generating function of the sum of independent 
variables is the product of the generating functions 
(or sum of the logarithm of the generating functions)

3) Moments can be determined from the derivates of the 
generating function

( ) ∑
∞

=

=
0

)(
n

nvnpvG

The generating function for a volume element dVi is given by:
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The generating function is defined as:
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Treatment of Volume in FIDA

FIDA defines the PSF empirically using:

The 3D volume integral becomes a 1D integral

FIDA reduces the 3D integral over volume to a 1D integral.

For Example: 3D Gaussian. 

Each concentric surface has the same brightness on the 
detector. Perform a transformation:
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where the coefficients a1, a2 and a3 are determined from the 
PCH/FIDA analysis of a known fluorescent standard

The generating function is given by integrating over the dV:
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The photon counting distribution is determined from the discrete
inverse Fourier transform of the generating function
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Distributions of Molecular Brightnesses

So far we have assumed each species has a well defined 
molecular brightness, εi

A distribution of molecular brightnesses can be fit to the 
PCH.

Warning! There are more parameters than data 
points. Criteria other than minimum χ2

are needed to fit to the data.

Adapted from:

Kask, et al., 1999 
PNAS 96:13756.



Multiple Species
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PCH distinguishes between different species via the 
molecular brightness, independent of the diffusion 
time.

Background, Dark counts, scattered laser light, etc. can be 
treated as an additional species

From: Chen et al. 1999 
Biophys J 77:553



Multiple Species
Mixture of 20 % rhodamine and 80 % coumarin

Molecular brightness versus dilution
From: Müller, Chen, 

Gratton 2000 Biophys J
78:474



Measuring Labeling Efficiencies

PCH of alcohol dehydrogenase for (a) singly labeled protein 
and (b) a mixture of singly labeled and doubly labeled protein

PCH can also be used to investigate the amount of 
aggregation, formation of dimers, trimers, . . .

From: Müller, Chen, 
Gratton 2000 Biophys J

78:474



Resolvability

χ2 misfit contour map for 1.6 × 107 photons with εA = 1.5 and 
εB = 6.0 (solid lines) and εA = 0.25 and εB = 1.0 
scaled by 61.6 (dashed lines) 

The small number of data points in the fit 
limitations the number of parameters 
one can reliably fit to.!

From: Müller, Chen, 
Gratton 2000 Biophys J

78:474



2D PCH

With two channel detection, 2D PCH can be analyzed

2D PCH analysis provides additional data points for 
parameter determination with multiple species
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