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Subsequent reduction of the mixture of methyl 7-cis, 9- 

cis- and 7-cis, g-cis, 13-cis-retinoates with LiAlH4 (room 
temperature, 2 hr) followed by MnO2 oxidation (CH2C12, 
room temperature, 0.75 hr) gave the corresponding mixture 
of retinal isomers. Separation of 7-cis,9-cis- and 7-cis,9- 
cis, 13-cis-retinal was readily effected by column chroma- 
tography (Biosil A, 25% CHC13-hexane) with the latter 
eluting first.I4 The N M R  spectra of the pure isomers are 
presented in Figures 1 and 2. The spectrum of 7-cis,9-cis- 
retinal is identical with that of HPLC purified sample from 
the mixture prepared previously. The olefinic region is well 
resolved and all vinylic hydrogens can be unambiguously 
assigned. The spectrum of 7 4 s .  g-cis, 13-cis-retinal is com- 
plicated by the accidental equivalence of H-11 and H-12; 
however, with Pr(fod)3 shift reagent, the familiar first order 
d and d of d signals for H-12 and H-11, respectively, are 
again present (see A in Figure 2). 

We are currently examining alternate approaches to ster- 
eoselective 15 + 5 condensations of 7,9-cc-1 as well as new 
routes to pure 7-c-1. 
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Inhibition of Jack Bean Urease (EC 3.5.1.5) by 
Acetohydroxamic Acid and by Phosphoramidate. An 
Equivalent Weight for Urease 

Sir: 
On the basis of earlier reports of new substrates for ure- 

ase,I,* and our finding that semicarbazide was a s ~ b s t r a t e , ~  
we quite wrongly predicted that phosphoramidate would 
also be a substrate. Instead we fourid that it produced re- 
versible inhibition with kinetic characteristics surprisingly 
similar to those of acetohydroxamic acid. This finding has 
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enabled us to obtain two totally independent assessments of 
the operational equivalent weight4 of urease, measured by 
correlation of specific enzymatic activity with the incorpo- 
ration of the reversibly bound inhibitors, ['4C]acetohydrox- 
amic acidsq6 and [32P]phosphoramidate. Further, it led us to 
reexamine the metal ion content of urease which is reported 
in the following comm~nica t ion .~  

[U-14C]Acetohydroxamic acid was prepared from [U- 
''C]acetamides by treatment with hydroxylammonium 
chloride for 1 hr a t  86-96' with the exclusion of moisture. 
The recrystallized product had constant specific radioactivi- 
ty (17.70 pCi/mmol) and mp 88.7-89.1°, lit.9 mp 89'. 
[ 14C]Acetohydroxamic acid was assayed spectrophotomet- 
rically,1° using acetohydroxamic acid as standard. 

Ammonium [ 32P] phosphoramidate was prepared essen- 
tially as described by Sheridan et aLI1 The recrystallized 
product had constant specific radioactivity (177.3 pCi/ 
mmol), and was free of contaminating radi~act ivi ty , '~  and 
of material which did not hydrolyze in acid to give inorgan- 
ic phosphate.15 

Scintillation counting of aqueous samples was carried out 
in Instagel (Packard Instrument Co., Inc.) or in a medium 
prepared from toluene (Mallinckrodt, scintillation grade; 48 
vol), Triton X-100 (35 vol), and Liquifluor (New England 
Nuclear; 2 vol) using a Nuclear Chicago Mark I or a Beck- 
man LS 250 liquid scintillation system. Counting efficien- 
cies were measured using an internal standard of [14C]to- 
luene (New England Nuclear) or ammonium [32P] phospho- 
ramidate (25 pl of a 3.442 m M  aqueous solution) dispensed 
with a Grunbaum pipet (Labindustries). All dilutions and 
measurements were made in duplicate. 

Urease was prepared as previously described,16 except 
that the storage buffer was 5 m M  in 6-mercaptoethanol. 
Two totally independently prepared samples (I and 11) of 
the enzyme were used. Ureases I and I1 had specific activi- 
ties" of 84,620 and 84,610 (pkat/ l .) /A2~0, respectively. 
Assays of inhibited enzyme samples and of control samples 
of native urease were performed at loo,  at which tempera- 
ture the reactivation of inhibited enzyme during assay is 
negligible. 

Urease I (5.10 ml, 5.62 mg/ml, in oxygen-free 0.02 M 
phosphate buffer, 1 m M  each in EDTA and P-mercap- 
toethanol, pH 7.0) was equilibrated at 38' with 4.9 m M  
[U-'4C]acetohydroxamic acid for 10 min. Urease I1 (5.30 
ml, 2.46 mg/ml, in 0.05 M N-ethylmorpholine buffer, 1 
m M  in EDTA and 5 m M  in P-mercaptoethanol, pH 7.12) 
was equilibrated at 38' with 23.2 m M  2-(N-morpholino)e- 
thanesulfonic acid (to produce pH -6.0) and 1 1.9 m M  am- 
monium [32P]phosphoramidate for 10 min. 

In each experiment, the sample of inhibited enzyme was 
cooled rapidly to Oo, and passed at 4' through a column 
(3.0 X 35 cm) of Sephadex G-50 preequilibrated with the 
appropriate oxygen-free buffer. As expected from the slow 
reactivation at 4' of the enzyme-inhibitor complexes,6 ap- 
propriate assays showed that the protein-inhibitor peaks 
were completely separated from the unbound radioactive 
inhibitors. The peak protein fraction ("maximally inhibited 
enzyme") was assayed immediately for enzymatic activity, 
protein concentration, and radioactivity. Aliquots (3.0 ml) 
of the maximally inhibited enzyme were equilibrated at 38' 
for varying lengths of time, cooled to O', passed through 
columns (2.2 X 14.5 cm) of Sephadex G-25 at 4', and simi- 
larly assayed. The results of these assays are given in Table 
I. 

A plot of the residual specific enzymatic activity of the 
effluent protein (expressed as a percentage of its specific ac- 
tivity before treatment with radioactive inhibitor) vs. the 
ratio [protein-bound inhibitor] / [protein] is strictly linear 
(Figure 1). The least-squares line so obtained extrapolates 
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also form complexes with hydroxamic acids2] and hydroxy- 
urea.22 The present work indicates that phosphoramidate 
may also be a useful reversible probe of the sites of metal- 
loenzymes. 
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Table I. Assavs of Partiallv Inhibited Urease 
~~~~ ~ 

Residual [Pro tein-bound 
specific Protein inhibitor] / 

enzymatic concentration Radioactivity [protein] b 
act ivi tp  (%) (mgiml) (nCi/ml) ( m o V d  

Urease I ,  [ "C] Acetohydroxamic Acid 
1 . 2 7 ~  2.351 0.3657 8.788 

18.1gd 0.976 0.1264 7.317 
33.76e 1.027 0.1066 5.864 
93.5f 2.35 <0.0013 <0.03 

Urease 11, Ammonium [ 32P] Phosphoramidate 
5.07c 0.934 1.413 8.533 

36.1gd 0.414 0.427 5.817 
5 1.83g 0.430 0.327 4.289 
9 9.2h 0.655 <0.006 <0.05 

aExpressed as a percentage of the original specific enzymatic 
activity. b [Protein-bound inhibitor] in units of kmol/ml; [protein] 
in units of g/ml. CMaximally inhibited enzyme. dReactivated for 
5 min a t  38". eReactivated for 15 min at 38". fMaximally inhibited 
enzyme, reactivated for 2 hr at 38" and dialyzed at 4" in the phos- 
phate buffer (four cycles). gReactivated for 10 min a t  38". *Max- 
imally inhibited enzyme, dialyzed for 1 8  hr a t  38" against the N- 
ethylmorpholine buffer, and then against the same buffer a t  4" 
(6 X 250 vol). 
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Figure 1. Correlation of residual specific enzymatic activity with incor- 
poration of radioactively labeled inhibitor into urease: [inhibitor] 
bound to protein, in units of pmol/ml; [protein] in units of g/ml; 0, 
[32P]phosphoramidate; A, [14C]acetohydroxamic acid. 

to yield an  equivalent weight of 11 1,800 daltons. The maxi- 
mum specific activity of urease that we have observed re- 
peatedly is 90,000 (pkat/l.)/A200. and therefore correction 
of the measured value gives a best estimate of 105,000 f 
1000 daltons for the equivalent weight.18 This equivalent 
weight implies a molecular weight of 420,000 or 525,000 
for the commonly observed species of urease (483,000),19 
and we have therefore begun a reinvestigation of the molec- 
ular weight and subunit structure of this enzyme. It should 
be noted, however, that our measurements are all based on 
AlCm1% = 5.89 a t  280 nm for the pure a result 
which is complicated by our discovery that the enzyme is a 
metalloenzyme and contains 2 f 0.3 g-atom of nickel/ 
105,000 g of protein.' If a pure sample of the apoenzyme of 
appropriate size can be produced,20 some refinement (possi- 
bly as much as 5%) of this equivalent weight may be possi- 
ble. 

The presence of two nickel atoms per 105,000 daltons 
poses such problems as: what is the ultimate subunit struc- 
ture of the enzyme; are the inhibitors "seeing" only one of 
the nickel atoms; are the environments of the nickel atoms 
different? Answers to these questions must await further 
work. 

Finally, it should be noted that other metalloenzymes 
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dently.12,' I However, the compound did not melt below 300'. Sheridan 

(1958). 

Jack Bean Urease (EC 3.5.1.5). A Metalloenzyme. 
A Simple Biological Role for Nickel? 

Sir: 
In 1926, Sumner isolated from jack beans (Canavalia 

ensiformis) the first crystalline enzyme, urease, and defined 
the proposition that enzymes could be proteins devoid of or- 
ganic coenzymes and metal ions.' It is therefore with some 
sadness that in this communication we adduce evidence 
which strongly indicates that urease is a nickel metalloen- 
zyme. 

The availability of highly purified urease in large quan- 
ti tie^^,^ has allowed us to determine its absorption spectrum 
a t  high concentrations. The native enzyme exhibits elec- 
tronic and/or vibrational transitions in the region 320-1 150 
nm, part of which are shown in Figure 1 (A,  A'). This spec- 
trum, together with the inhibition of the enzyme by hydrox- 
amic acids and phosphoramidate,6 led us to reexamine the 
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