Klausur zur Vorlesung Koordinationschemie, SS 2011

Stichworte zur Lösung

- (a) $[Cr(H_2O)_6]^{2^+}$: kleinster 10-Dq-Wert, da Oxidationsstufe +II. Die Feldaufspaltung der Chrom(III)-Komplexe (g_M gleich, f_L unterschiedlich) folgt der spektrochemischen Reihe: $F^- < H_2O < NH_3 < CN^-$. (b) Hexaaquachrom(III)-Ion, Hexacyanidochromat(III)-Ion, Hexaaquachrom(II)-Ion, Hexaaquachrom(III)-Ion, Hexaamminchrom(III)-Ion, Hexafluoridochromat(III)-Ion; $17.400 \text{ cm}^{-1} = 17.400 \times 10^{-7} \text{ nm}^{-1}$, Kehrwert: $10^7/17.400 \text{ nm} = 575 \text{ nm}$. (c) Prinzipiell werden drei Übergänge erwartet: 10 Dq (bei niedriger Energie); 10 Dq + vermehrte Abstoßung zwischen den Elektronen (höhere Energie); $2 \times 10 \text{ Dq}$ (größte Energie, 2e-Übergang, geringere Intensität). (d) Bei oktaedrischer Koodination nur für den Chrom(II)-Komplex möglich; wegen des kleinen g_M -Wertes Starkfeldligand (Cyanid) erforderlich.
- **2 (a)** Gelbes $[Co(NO_2-\kappa N)(NH_3)_5]^{2+}$ und rotes $[Co(NO_2-\kappa O)(NH_3)_5]^{2+}$ sind Bindungsisomere; Pentaammin-(nitrito-κO)-cobalt(III)-Ion. **(b)** In der spektrochemischen Reihe ist $NO_2^--\kappa N$ eher ein Starkfeldligand, $NO_2^--\kappa O$ ist ein Schwachfeldligand wie Oxalat. Der Beitrag der LFSE zur Beständigkeitskonstante begünstigt die $NO_2^--\kappa N$ -Form.
- (a) β_{14} ist als Bruttobeständigkeitskonstante die Massenwirkungskonstante des Gleich-3 gewichts $Cu^{2+} + 4 NH_3 \rightleftharpoons [Cu(NH_3)_4]^{2+}$, kurz: $Cu + 4 N \rightleftharpoons CuN_4$, also: $\beta_{14} =$ [CuN₄][Cu]⁻¹[N]⁻⁴. **(b)** Konzentration an Standardzustand-Kupfer(II) (also an Aquakomplex), wenn sich das Komplexbildungsgleichgewicht eingestellt hat: [Cu] = $0.1/10^{12} = 10^{-13}$, da praktisch alles Cu^{II} als Komplex vorliegt. Einsetzen in die Nernstsche Gleichung ergibt $E/V = 0.34 + 0.059/2 \lg 10^{-13} = -0.044$. (c) Kein OH⁻-Angriff auf den stabilen [Fe(edta)] - Komplex; OH - Angriff auf das Lewis-saure Zentralatom des wenig stabilen [FeCl₄] -Komplexanions, schließlich Fällung von Fe(OH)₃; das Zentralatom in [Fe(CO)₅] ist nicht Lewis-sauer sondern koordinativ gesättigt, daher Angriff am Carbonyl-C-Atom, dem elektrophilsten Atom des Komplexes. (d) Hydroxycarbonylkomplex, dann Stabilisierung durch Abspaltung von CO_2 und Bildung des Tetracarbonylhydridoferrats. [Fe(CO)₅] + OH⁻ \rightarrow $[Fe(CO)_4(COOH)]^-$ kein Redoxprozess; $[Fe(CO)_4(COOH)]^- \rightarrow [FeH(CO)_4]^-$ Oxidation von C_{COOH} von +II zu +IV in CO₂, 2e-Reduktion von H^{+I}_{COOH} zu Hydrid (H⁻). Ohne die Zwischenstufe: in $[Fe(CO)_5] + OH^- \rightarrow [FeH(CO)_4]^- + CO_2$, ein C von +II zu +IV, H von +I zu −I.
- **4 (a)** $d(xz,yz) < d(xy) < d(z^2) < d(x^2-y^2)$ (Jahn-Teller-Verzerrung). **(b)** *Deutliche* Streckung nur bei Entartung in e_g , nur bei high-spin möglich. **(c)** Das MO entspricht dem $d(x^2-y^2)$ -AO des Kristallfeldmodells; es ist das leere LUMO (siehe **a**). **(d)** Zwei spin-erlaubte Übergänge im UV-Vis-Spektrum, nämlich $x^2-y^2 \leftarrow xz/yz$ und $x^2-y^2 \leftarrow xy$ ($x^2-y^2 \leftarrow z^2$ dürfte im IR-Bereich liegen).