

Vorlesung zum Lehramtsgrundpraktikum

Dr. Magdalena Rusan

Kapitel 4

Säure-Base-Chemie Teil 2

07.11.2025

Säure-Base-Chemie

Säurestärke

$$HA + H_2O \longrightarrow H_3O^+ + A^-$$

Lage des Gleichgewichts entspricht der Stärke der Säure

Starke Säure bedeutete große Tendenz zur Deprotonierung

→ Gleichgewicht liegt mehr auf der rechten Seite als bei einer schwächeren Säure

$$\label{eq:Kapping} \text{Massenwirkungsgesetz:} \quad K = \frac{c(\text{H}_3\text{O}^+)c(\text{A}^-)}{c(\text{HA})c(\text{H}_2\text{O})} \\ \qquad \begin{bmatrix} \text{IHA} \end{bmatrix} \qquad & \text{Konzentration an nicht dissoziierter Säure} \\ & [\text{H}_3\text{O}^+] & \text{Oxoniumionenkonzentration} \\ & [\text{A}^-] & \text{Konzentration der Säureanionen} \\ & [\text{H}_2\text{O}] & \text{Konzentration Wasser} \\ \end{cases}$$

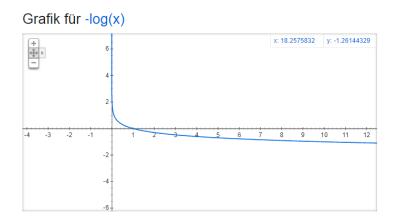
bei verdünnten Lösungen → Konzentration von H₂O konstant

wässrige Säure- bzw. Basenlösungen gelten als verdünnt, wenn Konzentration ≤ 1 mol/L

Säure-Base-Chemie

Säurestärke K_s

$$K \cdot [H_2O] = K_s = \frac{[H_3O^+][A^-]}{[HA]}$$


 K_s Werte häufig sehr groß, daher negativer dekadischer Logarithmus:

$$pK_S = -\lg K_S$$

Bsp.:
$$K_s = 10 \rightarrow pK_s = -1$$
, $K_s = 1000 \rightarrow pK_s = -3$

starke Säuren: rechte Seite des Protolysegleichgewichtes überwiegt \rightarrow Zähler größer als Nenner \rightarrow K_s > 1 \rightarrow pK_s < 0

je schwächer die Säure, desto größer ihr p K_s -Wert schwache Säuren: $K_s < 1 \rightarrow pK_s > 0$ weil Nenner größer als Zähler im Massenwirkungsgesetzt

Säure-Base-Chemie

Tab. 32 Protochemische "Spannungsreihe" einiger Säure-Base-Systeme (Wasser 25°C).

	,, _F	0		<u> Pit</u> s_
Säure	≠ Base	+ H+	$pK_{\rm S}$	<u> </u>
HClO ₄	≠ ClO ₄	+ H +	~ −10	
HCl ⁺	≠ Cl ^{-†}	+ H +	- 7.0	
H_2SO_4		+ H +	- 3.0	
$H_4^2PO_4^+$	$\rightleftharpoons H_3PO_4$	$+ H^{+}$	∼ − 3	
HClO ₃	$\rightleftharpoons ClO_3^-$	$+ H^{+}$	- 2.7	
HNO ₃	$\rightleftharpoons NO_3^{\frac{3}{2}}$	+ H +	- 1.37	
H ₃ O ⁺	≠ H ₂ O	+ H+	∓ 0 ^{a)}	
$SO_3 + H_2O$		+ H +	+ 1.90	
HSO ₄	$\rightleftharpoons SO_{4}^{2}$	+ H +	+ 1.96	
H_3PO_4	$\rightleftharpoons H_2 PO_4^-$	+ H +	+ 2.161	
$[Fe(OH_2)_6]^{3+}$	$\rightleftharpoons [\tilde{\text{Fe}}(\tilde{\text{OH}}_2)_5(\text{OH})]^{2+}$	+ H +	+ 2.46	
HF	≠ F	+ H +	+ 3.17	
HAc	≠ Ac ⁻	+ H +	+ 4.75	
$[Al(OH_2)_6]^{3+}$	$\rightleftharpoons [Al(OH_2)_5(OH)]^{2+}$	+ H +	+ 4.97	Holleman, Wiberg, Lehrb
$CO_2 + H_2O$	$\Rightarrow HCO_3^-$	+ H +	+ 6.35	der Anorganischen Chem
$[Fe(OH_2)_6]^{2+}$	$\rightleftharpoons [Fe(OH_2)_5(OH)]^+$	+ H +	+ 6.74	
H_2S	≠ HS ⁻	+ H+	+ 6.99	102. Auflage
HSO ₃	$\rightleftharpoons SO_3^{2-}$	+ H +	+ 7.20	
$H_2PO_4^-$	$\rightleftharpoons \mathrm{HPO_4^{2-}}$	+ H +	+ 7.207	
HCIO T	≠ ClO ^{-‡}	+ H +	+ 7.537	
HCN	≠ CN ⁻	+ H +	+ 9.21	
NH ₄ ⁺	⇒ NH ₃	+ H +	+ 9.25	
$[Zn(OH_2)_6]^{2+}$	$\rightleftarrows [Zn(OH_2)_5(OH)]^+$	+ H +	+ 8.96	
HCO ₃	$\rightleftarrows CO_3^{2-}$	+ H +	+ 10.33	
H_2O_2	$\neq HO_2^{\frac{1}{2}}$	+ H +	+ 11.65	
HPO_4^{2-}	$\rightleftarrows PO_4^{3-}$	+ H +	+ 12.325	
HS ⁻	$\rightleftarrows S^{2^{-4}}$	+ H+	+ 12.89	
H ₂ O	≠ OH⁻	+ H+	+ 14.00 ^{a)}	
NH ₃	$\rightleftarrows NH_2^-$	+ H+	+ 23	
OH ⁻	$\rightleftarrows O^{2^{-2}}$	+ H+	+ 29	
H_2	≠ H ⁻	+ H +	+ 39	
2		,		

Holleman, Wiberg, Lehrbuch
der Anorganischen Chemie,
102. Auflage

	Säure	Base	pK_s		
	HClO ₄	ClO_4^-	-10		
	HCl	Cl-	- 7		
	$\mathrm{H}_2\mathrm{SO}_4$	HSO_4^-	- 3,9		
	H_3O^+	H_2O	- 1,74		
	HNO_3	NO_3^-	- 1,37		
	HSO_4^-	SO_4^{2-}	+ 1,96		
	H_2SO_3	HSO_3^-	+1,90		
	H_3PO_4	$\mathrm{H_2PO_4^-}$	+2,16		
	$[{\rm Fe}({\rm H_2O})_6]^{3+}$	$[{\rm Fe}({\rm OH})({\rm H}_20)_5]^{2+}$	+2,46		
	HF	F^-	+3,18		
Stärke der	$\mathrm{CH_{3}COOH}$	CH ₃ COO-	+4,75		
Säure nimmt	$[{\rm Al}({\rm H}_2{\rm O})_6]^{3+}$	$[{\rm Al}({\rm OH})({\rm H}_2{\rm O})_5]^{2+}$	+4,97	Stärke der Base nimme zu	
zu	$CO_2 + H_2O$	HCO_3^-	+6,35		
1	$[{\rm Fe}({\rm H_2O})_6]^{2+}$	$[\mathrm{Fe}(\mathrm{H_2O})_5\mathrm{OH}]^+$	+6,74		
l	H_2S	HS-	+6,99		
	HSO_3^-	SO_3^{2-}	+7,20		
	$\mathrm{H_2PO_4^-}$	HPO_4^{2-}	+7,21		
	$[{\rm Zn}({\rm H_2O})_6]^{2+}$	$[\mathrm{Zn}(\mathrm{H_2O})_5\mathrm{OH}]^+$	+ 8,96		
	HCN	CN-	+9,21		
	NH_4^+	NH_3	+9,25		
	HCO_3^-	CO_3^{2-}	+10,33		
	$\mathrm{H_2O_2}$	HO_3^-	+11,65		
	HPO_4^{2-}	PO_4^{3-}	+12,32		
	HS-	S^{2-}	+12,89		
	H_2O	OH-	+15,74		
	OH-	O^{2-}	+29		

 pK_s -Werte einiger Säure-Base-Paare bei 25°C ($pK_s = - \lg K_s$)

Internettabelle

a) Die Konzentration des Wassers (55.3 mol/l) ist als Konstante im p K_S -Wert mit enthalten (ist dies nicht der Fall, so gilt: $K_S = [H_3O^+][OH^-]/[H_2O] = 10^{-15.9} [mol/l]$).

Säure-Base-Chemie

Quelle: Prof. Ivanovic-Burmazovic

Säure	Formel	Ks	pK s
Perchlorsäure	HCIO ₄	= 10 ¹⁰	≈ -10
Chlorwasserstoffsäure	HCI	= 10 ⁶	= −6
Hydroniumion	H ₃ O+	1.00	0.00
Hydrogensulfation	${ m HSO_4}^-$	1.2×10^{-2}	1.92
Phosphorsäure	H_3PO_4	7.5×10^{-3}	2.12
Fluorwasserstoffsäure	HF	3.5×10^{-4}	3.45
Essigsäure	CH₃COOH	1.78×10^{-5}	4.74
Aluminiumion (hydrat.)	$AI(H_2O)_6^{3+}$	7.2×10^{-6}	5.14
Hydrogensulfition	${\rm HSO_3^-}$	1.1×10^{-7}	6.96
Hypochlorige Säure	HCIO	3.1×10^{-8}	7.51
Ammoniumion	NH_4^+	5.6×10^{-10}	9.25
Hydrogenphosphation	HPO_4^{2-}	2.1×10^{-13}	12.68
Hydrogensulfition	HS-	1.3×10^{-13}	12.88
Wasser	H ₂ O	1.00×10^{-14}	14.00
Methanol	CH ₃ OH	2.9×10^{-16}	15.54
Ammoniak	NH_3	$=10^{-35}$	= 35

pK_s nimmt ab, d.h. Säurestärke nimmt zu!

pK_s < 0 Starke Säure

0 < pK_s < 4 Mittelstarke Säure

pK_s > 4 Schwache Säure

(Die entsprechende Einteilung gilt für Basen)

Aus Archiv

Säure-Base-Chemie

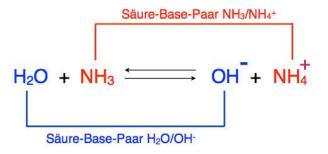
Basenkonstante K_B

$$B + H_2O \rightleftharpoons HB^+ + OH^- \qquad K = \frac{[OH^-][BH^+]}{[B][H_2O]}$$

$$K \cdot [H_2O] = KB = \frac{[OH^-][BH^+]}{[B]}$$

Analog

$$pK_B = -lg K_B$$


$$K_S \cdot K_B = 10^{-14}$$

$$pK_S + pK_B = pK_W = 14$$

$$pK_B(NH_3) = 14 - pK_s(NH_4^+)$$

z.B. Neutralbase NH₃

$$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$$

Säure-Base-Chemie

Quelle: Prof. Ivanovic-Burmazovic

Wegen $K_s K_B = K_W$ gilt:

Je größer K_S für eine Säure (Säurestärke groß), desto kleiner wird K_B der konjugierten Base (Basenstärke klein).

Säure / konjugierte Base

Essigsäure / Acetat

Hypochlorige Säure / Hypochlorit

 K_s (Essigsäure) = 1,8 x 10⁻⁵ mol/L (p K_s = 4,7)

 K_s (Hypochlorige Säure) = 3,2 x 10⁻⁸ mol/L (p K_s = 7,5)

$$K_{R}(Acetat) = 5.6 \times 10^{-10} \text{ mol/L} (pK_{R} = 9.3)$$

 $K_B(Hypochlorit) = 3.1 \times 10^{-7} \text{ mol/L } (pK_B = 6.5)$

Säurestärke nimmt zu

Basenstärke nimmt zu

Je schwächer die Säure, desto stärker die korrespondierende Base!

Säure-Base-Chemie

pH-Werte starker Säuren

z.B. HCl,
$$H_2SO_4$$
, HClO₄ $pK_s < 0$

Protolysegleichgewicht starker Säuren liegt praktisch vollständig auf der rechten Seite des Massenwirkungsgesetzes, da nahezu alle Säuremoleküle H₂O zu H₃O⁺ protonieren.

 \rightarrow Konzentration von H₃O⁺ ist gleich der Ausgangskonzentration c₀ der Säure

Starke Säuren

$$pK_s < 0$$

 $[H_3O]^+ = [A^-] = [HA_0]$

$$pH = -lg[H_3O^+] = -lg[HA] = -lgc_0$$

Analog gilt für starke Basen:
$$pOH = -\lg[OH^-] = -\lg[Base] = -\lg c_0$$

pH-Werte mittelstarker Säuren

z.B. HF

$$HA + H_2O \longrightarrow A^- + H_3O^+$$

 $C_0 - X$ X

$$K_S = \frac{c(A^-) \times c(H_3O^+)}{c(HA)} = \frac{c(A^-) \times c(H_3O^+)}{c_0(HA) - c(H_3O^+)} = \frac{x^2}{c_0 - x}$$

p-q-Formel

$$x^2 + \mathbf{p} \cdot x + \mathbf{q} = 0$$
 $\mathbf{a} \cdot x^2 + \mathbf{b} \cdot x + \mathbf{c} = 0$

$$x_{1/2} = -rac{{ extbf{p}}}{2} \pm \sqrt{\left(rac{{ extbf{p}}}{2}
ight)^2 - q} \hspace{1cm} x_{1,2} = rac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}$$

Mitternachtsformel

$$\mathbf{a} \cdot x^2 + \mathbf{b} \cdot x + \mathbf{c} = 0$$

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}$$

Bzw. für mittelstarke Basen

$$c(H_3O^+) = -1/2 \times K_S + \sqrt{\frac{1}{4} \times K_S^2 + K_S \times C_0}$$

$$c(OH^{-}) = -1/2 \times K_B + \sqrt{\frac{1}{4} \times K_B^2 + K_B \times C_0}$$

pH-Werte schwacher Säuren

z.B. Essigsäure
$$CH_3COOH$$
 $pK_s > 0$

Protolysegleichgewicht schwacher Säuren liegt weitestgehend auf der linken Seite des Massenwirkungsgesetzes.

$$HA + H_2O \longrightarrow A^- + H_3O^+$$

 $C_0 - x$ x x

$$K_S = \frac{c(A^-) \times c(H_3O^+)}{c(HA)} = \frac{c(A^-) \times c(H_3O^+)}{c_0(HA) - c(H_3O^+)} = \frac{x^2}{c_0-x}$$

Näherung

$$x = c(H_3O^+) = c(A^-)$$

$$x = c(H_3O^+) = c(A^-)$$
 $C_0 >> c(H_3O^+)$ somit $c(HA) \approx c_0$

$$K_s \cdot c_0 = x^2$$

 $x = c(H_3O^+) = c(A^-)$

Säure-Base-Chemie

$$HOAc + H_2O \rightleftharpoons H_3O^+ + OAc^-$$

$$K_s = \frac{[H_3O^+][OAc^-]}{[HOAc]}$$
 $c(H_2O) = konstant$

CH₃COOH: Essigsäure HOAc CH₃COO-: Acetat-Ion OAc-

Da aus einem Molekül HOAc ein H_3O^+ -Ion und ein OAc $^-$ -Ion entstehen \rightarrow Konzentration beider Ionen gleich groß $[H_3O^+] = [OAc^-]$

$$K_S = \frac{[H_3O^+]^2}{[HOAc]}$$

Wegen der kleinen Säurekonstante bzw. des Gleichgewichts, das auf der linken Seite liegt:

$$[\text{HOAc}] \approx c_0(\text{HOAc})$$

$$\Rightarrow [H_3O^+]^2 = [HOAc] \cdot K_S$$
$$[H_3O^+]^2 = c_0(HOAc) \cdot K_S$$

C₀: Anfangskonzentration der Säure [HOAc]: Konzentration der Säure, die noch nach der Dissoziation vorhanden ist

Schwache Säuren

- $pK_s > 0$
- $[H_3O]^+ = [A^-]$
- $[HA] = [HA_0]$

$$[H_3O^+] = \sqrt{c_0(HOAc)K_s} = (c_0(HOAc) \cdot K_s)\frac{1}{2}$$

Säure-Base-Chemie

Logarithmieren (mit -lg):

$$pH = \frac{1}{2}pK_s - \frac{1}{2}lgc_0$$
$$pH = \frac{1}{2}(pKs - lgc0)$$

$$pH = \frac{1}{2}(pKs - lgc0)$$

Definitionen aus Holleman, Wiberg:

- Überaus starke Säuren: pK_s <-3,5
- Sehr stark: $-3.5 < pK_s < 0$
- Stark: pK_s ~ 0
- Mittelstark: $0 < pK_s < 3.5$
- Schwach: $3.5 < pK_s < 10.5$
- Sehr schwach: 10,5 < pK_s < 17,5
- Überaus schwach: pK_s > 17,5

Für schwache Basen gilt:

$$analog:$$

$$pOH = \frac{1}{2}(pKB - lgc0)$$

c_o entspricht c(HA)

$$\log(a * b) = \log(a) + \log(b)$$

4. Logarithmusgesetz:

$$\log(\sqrt[y]{x}) = \frac{1}{y}\log(x)$$

pK_B < 0 starke Basen

 $pK_B > 0$ schwache Basen

Säure-Base-Chemie

Dissoziationsgrad

Der **Dissoziationsgrad** α bzw. Protolysegrad gibt das Verhältnis der durch Dissoziation gelösten Säure- bzw. Base-Teilchen zur Gesamtkonzentration der Säure-/Base-Teilchen der Lösung an. A kann Werte von 0 bis 1 (100% Protolyse) annehmen.

→ Ausmaß einer protolytischen Reaktion, bzw. Anteil Säure, der in einer Reaktion mit H₂O zur korrespondierenden Base umgewandelt wurde

$$\alpha = \frac{\text{Konzentration der protolysierten HA-Moleküle}}{\text{Konzentration der HA-Molekülevor der Protolyse}}$$

$$\alpha = \frac{\mathbf{c}_0 - [\mathrm{HA}]}{c_0} = \frac{[\mathrm{H}_3\mathrm{O}^+]}{c_0} = \frac{[\mathrm{A}^-]}{c_0} \qquad \text{Für einwertige Säure: } [\mathrm{A}^-] = [\mathrm{H}_3\mathrm{O}^+] \qquad \text{umstellen:} \quad [\mathrm{H}_3\mathrm{O}^+] = \alpha \cdot \mathbf{c}_0 \\ [\mathrm{A}^-] = \alpha \cdot \mathbf{c}_0$$

$$K_{s} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]} = \frac{\alpha \cdot c_{0} \cdot \alpha \cdot c_{0}}{c_{0} - \alpha \cdot c_{0}} = \frac{\alpha^{2} \cdot c_{0}^{2}}{c_{0} - \alpha \cdot c_{0}} = c_{0}\frac{\alpha^{2}}{1 - \alpha}$$

für schwache Säuren gilt
$$\alpha << 1$$
: $K_s = c_0 \cdot \alpha^2 \rightarrow \alpha = \sqrt{\frac{K_S}{c_0}}$

Ostwaldsches Verdünnungsgesetz (für schwache Säuren)

Säure-Base-Chemie

Der Dissoziationsgrad α gibt an, wie groß der Prozentsatz an dissoziierten Teilchen ist

- Starke Säuren und Basen (starke Elektrolyte) dissoziieren vollständig (100 %) in α = 1
 Wasser (z.B. HCl, NaOH)
- Schwache Säuren und Basen sind nur zum Teil in Wasser dissoziiert (z.B. NH_3 , $\alpha < 1$ CH_3COOH)

c_o ... Ausgangskonzentration der Säure

c... Konzentration im Gleichgewicht

$$\alpha = c(A^-)/c_0$$

dissoziierte Spezies:
$$c(A^{-}) = c(H_3O^{+}) = \alpha c_0$$

$$K_s = \frac{c(A^-) \times c(H_3O^+)}{c(HA)} = \frac{\alpha^2 \times c_0^2}{(1-\alpha) \times c_0} = \frac{\alpha^2 \times c_0}{(1-\alpha)}$$

nicht dissoziierte Spezies: $c = (1 - \alpha)c_0$

Ostwaldsches Verdünnungsgesetz:

bei niedriger Konzentration steigt α

$$K_s / c_0 = \frac{\alpha^2}{(1-\alpha)}$$

Quelle: Prof. Ivanovic-Burmazovic

Säure-Base-Chemie

1,0

0

Dissoziationsgrad α als Funktion der Konzentration

$$CH_3COOH + H_2O \longrightarrow H_3O^+ + CH_3COO^-$$

$$K_S = \frac{c(H^+) \times c(CH_3COO^-)}{c(CH_3COOH)}$$
 $K_S(Essigsäure) = 1.8 \times 10^{-5}$

c_0 / mol/l α 0,1 0,013 (1,3 %) 10^{-4} 0,344 (34,4 %) 10^{-6} 0,952 (95,2 %) 10^{-9} 1 (100%)

auch schwache Elektrolyte sind bei hoher Verdünnung praktisch vollständig dissoziiert

Ostwaldsches Verdünnungsgesetz: bei niedriger Konzentration steigt α

6,0 the state of the state of

0,10

Säurekonzentration (M)

0,15

0.05

Säure-Base-Chemie

pH-Wert einer starken Säure: komplett dissoziiert,
$$\alpha = 1$$
 [H⁺] = $c(H_3O^+) = \alpha c_0 = c_0$

$$[H^+] = 0,001 \text{ mol/L}$$
 $pH = -log0,001 = 3$

pH-Wert einer starken Base: komplett dissoziiert

$$[OH^{-}] = 0,001 \text{ mol/L}$$

$$pOH = -log0,001 = 3;$$

 $pOH + pH = 14$
 $pH = 14 - 3 = 11$

Autoprotolyse des Wasser wird durch hohe [H⁺] oder [OH⁻] unterdrückt und muss nicht berücksichtig werden

$$c_0 = 10^{-7} \text{ mol/L HCl}$$
 falsch

bei sehr kleinen co muss man Autoprotolyse des Wassers berücksichtigen

 $K_W = c(H^+) c(OH^-)$

Autoprotolyse des Wasser

$$K_W = 1 \times 10^{-14}$$
 $1 \times 10^{-14} = (10^{-7} + w)$ w $2 H_2O \longrightarrow H_3O^+ + OH^-$ Mitternachtsformel $w = 0,618 \times 10^{-7}$

$$c_0 + w$$
 w

$$w$$
 c(H⁺) = $c_0 + w = 10^{-7} + 0.618 \times 10^{-7} = 1.618 \times 10^{-7}$

MAXIMILIANS- FAKULTÄT FÜR CHEMIE UND PHARMAZIE

Säure-Base-Chemie

Mehrprotonige Säuren

Einprotonige Säuren

HCI + H₂O
$$\longrightarrow$$
 H₃O⁺ + CI⁻ Chlorid

HBr + H₂O \longrightarrow H₃O⁺ + Br⁻ Bromid

HF + H₂O \longrightarrow H₃O⁺ + F⁻ Fluorid

HCN + H₂O \longrightarrow H₃O⁺ + CN⁻ Cvanid

Zweiprotonige Säuren

$$H_2SO_4 + H_2O \longrightarrow H_3O^+ + HSO_4^-$$
Schwefelsäure $H_3O^+ + SO_4^2$
Hydrogensulfat $H_3O^+ + SO_4^2$
Hydrogensulfat $H_2CO_3 + H_2O \longrightarrow H_3O^+ + HCO_3^-$
Kohlensäure $H_3O^+ + CO_3^2$
Hydrogencarbonat $H_3O^+ + CO_3^2$
Carbonat $H_2S + H_2O \longrightarrow H_3O^+ + HS^-$
Refelwasserstoff $H_3O^+ + HS^-$
Hydrogensulfid

Schwefelwasserstoff

Hydrogensulfid

$$HS^- + H_2O$$

Hydrogensulfid

 $H_3O^+ + S^2$

Hydrogensulfid

Sulfid

Säure-Base-Chemie

Dreiprotonige Säuren

z.B. Phosphorsäure H₃PO₄

$$H_3PO_4 + H_2O \rightleftharpoons H_3O^+ + H_2PO_4^ pK_s(1) = +2.16$$

 $H_2PO_4^- + H_2O \rightleftharpoons H_3O^+ + HPO_4^{2-}$ $pK_s(2) = +7.21$

hydrogenphosphat
$$HPO_4^{2-} + H_2O \rightleftharpoons H_3O^+ + PO_4^{3-} \qquad pK_s(3) = +12.32$$

Phosphat

Für Protonen mehrprotoniger Säuren ist die Tendenz der Abgabe verschieden groß.

→ für die einzelnen Protolyseschritte mehrprotoniger Säuren gilt:

$$K_s(1) > K_s(2) > K_s(3)$$
 bzw. $pK_s(1) < pK_s(2) < pK_s(3)$

da H⁺ leichter aus einem neutralen Molekül abspaltbar ist als aus einem negativ geladenen Ion

Für Gesamtreaktion mehrprotoniger Säuren gilt:

$$K_s(ges) = K_s(1) \cdot K_s(2) \cdot K_s(3)$$
 bzw. $pK_s(ges) = pK_s(1) + pK_s(2) + pK_s(3)$

Säure-Base-Chemie

pH-Wert einer mehrprotonigen Säure (z.B. H₂SO₄)

Quelle: Prof. Ivanovic-Burmazovic

Kombination starke/mittelstarke Säure

$$pK_{S1} = -3$$
 $pK_{S2} = 2$

Effekt der 2. Dissoziationsstufe auf pH der H₂SO₄ Lösungen ist **von c₀ abhängig**

• höhere Konz. $c_0 = 0,177 \text{ mol/L}$

$$H_2SO_4 + H_2O \longrightarrow HSO_4^- + H_3O^+$$

0,177 mol/L 0,177 mol/L

1. Dissoziationsstufe vollständig

$$[H^+] = 0.177 \text{ mol/L} => pH = 0.75$$

$$HSO_4^- + H_2O \implies SO_4^{2-} + H_3O^+$$
 $0,177 - x \qquad x \qquad x + 0,177$

2. Dissoziationsstufe wird durch 1. beeinflusst

$$K_{S2} = \frac{c(SO_4^{2-}) \times c(H_3O^+)}{c(HSO_4^-)} = \frac{x(x+0,177)}{(0,177-x)}$$
 $x = 0,009 \text{ mol/L}$

$$c_{1+2}(H^+) = c_0 + x = 0.177 \text{ mol/L} + 0.009 \text{ mol/L} = 0.186 \text{ mol/L}$$

pH =
$$-\log c_{1+2}$$
 (H⁺) = $-\log(0.186 \text{ mol/L})$ = 0.73

H₃O⁺ Ionen aus dem 2. Protolyse-Schritt beeinflussen den pH-Wert kaum, wenn H₂SO₄ in höherer Konzentration vorliegt!

Quelle: Prof. Ivanovic-Burmazovic

pH-Wert einer mehrprotonigen Säure (z.B. H₂SO₄)

Kombination starke/mittelstarke Säure

$$pK_{S1} = -3$$
 $pK_{S2} = 2$

0,01 mol/L 0,01 mol/L

Effekt der 2. Dissoziationsstufe auf pH der H₂SO₄ Lösungen ist von c₀ abhängig

niedrigere Konz.

$$c_0 = 0.01 \text{ mol/L}$$

$$H_2SO_4 + H_2O \longrightarrow HSO_4^- + H_3O^+$$

1. Dissoziationsstufe vollständig

$$[H^+] = 0.01 \text{ mol/L} => pH = 2$$

$$HSO_4^- + H_2O \iff SO_4^{2-} + H_3O^+$$
 $0,01-x$
 $x + 0,01$

2. Dissoziationsstufe wird durch 1. beeinflusst

$$K_{S2} = \frac{c(SO_4^{2-}) \times c(H_3O^+)}{c(HSO_4^{-})} = \frac{x (x + 0.01)}{(0.01 - x)}$$
 $x = 0.0041 \text{ mol/L}$

$$c_{1+2}(H^+) = c_0 + x = 0.01 \text{ mol/L} + 0.0041 \text{ mol/L} = 0.0141 \text{ mol/L}$$

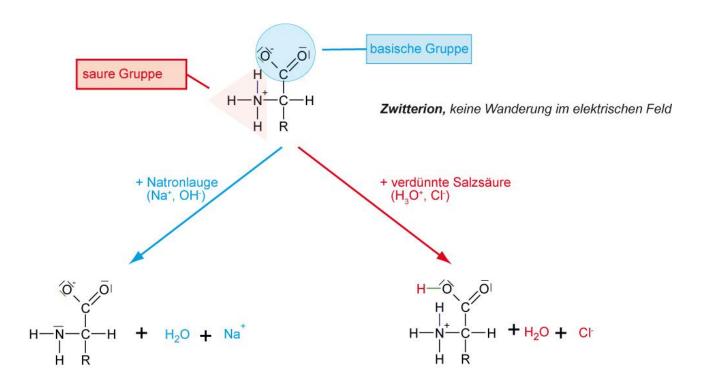
pH =
$$-\log c_{1+2}(H^+) = -\log(0.0141 \text{ mol/L}) = 1.85$$

H₃O⁺ Ionen aus dem 2. Protolyse-Schritt beeinflussen den pH-Wert stärker, wenn H₂SO₄ in niedrigerer Konzentration vorliegt!!

Ampholyte

Manche Verbindungen oder Ionen, sogenannte **Ampholyte**, können sowohl Protonen aufnehmen als auch abgeben, je nachdem, ob ein stärkerer Protonendonator oder Protonenakzeptor anwesend ist.

Einfache Beispiele: HSO₄-, NH₃, H₂O, Aminosäuren, ...


Beispiele für Ampholyte sind HSO₄-, H₂PO₄-, HPO₄²-

$$H_2PO_4^- + HCI \longrightarrow H_3PO_4 + CI^-$$

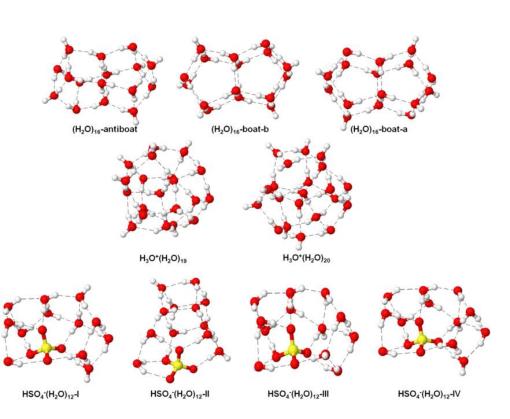
$$H_2PO_4^- + OH^- \longrightarrow H_2O + HPO_4^{2-}$$

$$HCI + H_2O \longrightarrow H_3O^+ + CI^-$$

$$CO_3^{2-} + H_2O \longrightarrow HCO_3^{-} + OH^{-}$$

Säure-Base-Chemie

Nivellierender Effekt

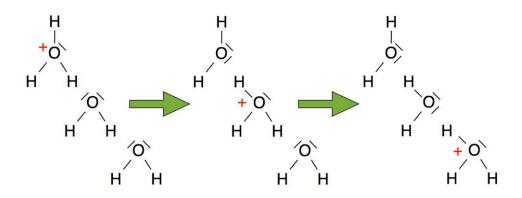

In Wasser ist die stärkste Säure das Oxonium-Ion H₃O⁺, die stärkste Base das Hydroxid-Ion OH⁻.

Dementsprechend sind alle sehr starken Säuren und Basen in Wasser gleich stark! Das Wasser übt daher einen nivellierenden Effekt aus.

Sinnvolle pH-Werte in Wasser sind nur von 0 bis 14.

- → Messung von sehr starken Säuren in sauren Lösemittel (z.B. Essigsäure)
- → Messung von sehr starken Basen in basischen Lösemittel (z.B. DMSO)

Optimized geometries for three isomers of $(H_2O)_{16}$ cluster, protonated water clusters of $H_3O^+(H_2O)_{19}$ and $H_3O^+(H_2O)_{20}$, and four isomers of HSO_4 $^-(H_2O)_{12}$ cluster.



Säure-Base-Chemie

Der Grotthus-Mechanismus

Beweglichkeit von Protonen in Wasser

Protonen verweilen mit einer typischen Halbwertszeit von 1 - 4 ps (1 ps = 10^{-12} s) an einem Ende einer Wasserstoffbrücke.

Geschwindigkeitskonstanten von Protonenübergangsreaktionen in wässeriger Lösung bei 25°C.

Reaktion	K _(hin) [L mol ⁻¹ s ⁻¹	K _(rück) [L mol ⁻¹ s ⁻¹
$[H_3O^+] + [OH^-] \rightleftharpoons [H_2O] + [H_2O]$	1,4*10 ¹¹	2,5*10 ⁻⁵
$[NH_4^{+}] + [OH^{-}] \rightleftharpoons [H_2O] + [NH_3]$	3,4*10 ¹⁰	6*10 ⁵
$[H_3O^+] + [SO_4^2] \Rightarrow [H_2O] + [HSO_4]$	1,0*10 ¹¹	7*10 ⁷

Säure/Base Reaktionen verlaufen sehr schnell!!

Säure-Base-Chemie

<u>Protolysereaktionen beim Lösen von Salzen</u>

1. Salze aus einer starken Säure mit einer starken Base

- z.B. NaCl, NaClO₄
- keine Aciditätsänderungen, weil die Kationen überaus schwache Säuren und die entstehenden Anionen überaus schwache Basen darstellen

NaCl +
$$H_2O$$
 \longrightarrow Na⁺_(aq) + Cl^- _(aq) + H_2O
pH = 7 neutral

2. Salze aus einer schwachen Säure mit einer starken Base

- z.B. CH₃COONa, Na₂CO₃, Na₂HPO₄, Na₂S
- werden durch die korrespondierende Base der Säure beeinflusst und reagieren in wässriger Lösung alkalisch

$$CH_3COO^-Na^+ + H_2O \longrightarrow Na^+OH^- + CH_3COOH$$

$$pK_S + pK_B = 14$$

 $pOH = \frac{1}{2}(pK_B - lgc_0)$
 $pH = 14 - pOH$

3. Salze aus einer schwachen Base mit einer starken Säure

- z.B. NH₄Cl, AlCl₃, FeCl₃
- werden durch die korrespondierende Säure der Base beeinflusst und reagieren in wässriger Lösung sauer

$$NH_4^+Cl^- + H_2O \longrightarrow H_3O^+ + Cl^- + NH_3$$

$$pH = \frac{1}{2}(pK_s - Igc_0)$$

4. Salze aus einer schwachen Säure mit einer schwachen Base

- z.B. $(NH_4)_2SO_4$, CH_3COONH_4 , $(NH_4)_2S$, NH_4CN
- pH-Wert ist variabel und unabhängig von der Konzentration des Salzes

$$HB^+ + A^- \rightleftharpoons B + HA$$

$$pH = \frac{1}{2}(pK_s(BH^+) + pK_s(HA))$$

Ampholyte

Ampholyte (Salze aus einer schwachen Säure und bzw. mit einer schwachen Base)

$$CH_3COO^- = OAc^-$$

NH₄⁺ / H₂O / CH₃COO⁻

—

Essigsäure CH₃COOH abgekürzt HOAc

Acetatanion CH₃OO⁻ abgekürzt OAc⁻

1. kann H⁺ abgeben

kann H⁺ aufnehmen **oder** abgeben

 pK_B-Werte anschauen: um zu entscheiden was die stärkere Base ist, d.h. was H⁺ eher/zuerst aufnimmt:

kann H⁺ aufnehmen

$$H_2O$$
 / CH_3COO^-

$$pK_s = 0$$
 $pK_s = 4,75$
 $pK_B = 14$ $pK_B = 14 - 4,75 = 9,25$

Säure-Base-Chemie

- \longrightarrow Vergleich: $pK_B (H_2O) > pK_B (CH_3COO^-)$
 - 14 > 9,25
 - \longrightarrow CH₃COO⁻ ist eine stärkere Base als H₂O \longrightarrow NH₄⁺ gibt H⁺ an OAc⁻ statt H₂O ab
 - Reaktion: $NH_4^+ + OAc^- \longrightarrow NH_3 + HOAc$

Ammoniumacetat NH₄OAc ist ein Ampholyt, da es H⁺ auf- und abgeben kann.

pH-Wert-Berechnung: Gleichung für Ampholyte verwenden:

$$pH = \frac{1}{2}(pK_s(NH_4^+/NH_3) + pK_s(HOAc/OAc^-)) = \frac{1}{2}(9,25 + 4,75) = 7$$

z.B.: Ammoniumcyanid NH₄⁺CN⁻ in H₂O lösen

$$NH_4^+ + H_2O \longrightarrow NH_3 + H_3O^+$$

$$CN^- + H_2O \longrightarrow HCN + OH^-$$

$$\implies$$
 Reaktion: $NH_4^+ + CN^- = NH_3 + HCN^-$

Ammoniumcyanid NH₄CN ist ein Ampholyt, da es H⁺ auf- und abgeben kann.

pH-Wert-Berechnung: Gleichung für Ampholyte verwenden:

pH =
$$\frac{1}{2}$$
(pK_s(NH₄+/NH₃) + pK_s(HCN/CN-)) = $\frac{1}{2}$ (9,25 + 9,21) = 9,23