

Vorlesung zum Lehramtsgrundpraktikum

Dr. Magdalena Rusan

Kapitel 4 Säure-Base-Chemie Teil 1

31.10.2025

Säure-Base-Chemie

Zwei Grundtypen chemischer Reaktionen zum Ausgleich des Elektronenmangels von Verbindungen und Ionen:

Redox-Reaktionen: Elektronenübergänge

Säure-Base-Reaktionen: Elektronenpaare werden gemeinsam von einem

elektronenärmeren und einem elektronenreicheren

Reaktionspartner benutzt

Verschiedene Theorien zu Säure-Base-Reaktionen:

- 1. Arrhenius-Theorie
- 2. Brønsted-Theorie
- 3. Lewis-Säure-Base-Theorie

Gemeinsamkeiten:

Prinzip:

Säure = Mangel an negativer bzw. Überschuss an positiver Ladung

Base = elektronenreichere Partner

Säure-Base-Chemie

Svante Arrhenius (1859 - 1927)

Theorie von Arrhenius:

Säure: Arrhenius-Säuren dissoziieren in wässriger Lösung in Wasserstoff-Kationen (H⁺) und Säurerest-Anionen.

z.B.
$$HCl \longrightarrow H^+ + Cl^-$$

Base: Arrhenius-Basen dissoziieren in wässriger Lösung in Hydroxid-Anionen (OH⁻) und Metall-Kationen.

Die Reaktion einer Säure mit einer Base heißt Neutralisation.

z.B.
$$H^+ + OH^- \longrightarrow H_2O$$

Allgemein:

→ Elektrolytcharakter von Säureund Base-Lösungen

Probleme:

- z.B. Ammoniak (NH₃)
- nur auf Säuren und Basen in wässriger Lösung anwendbar

Säure-Base-Chemie

In dieses Konzept passen: Oxide

- Oxide, die mit H₂O Säuren bilden, nennt man Säureanhydride, z.B. CO₂, SO₃
- Oxide, die in H₂O Hydroxide bilden, nennt man basische Oxide, z.B. Na₂O
- Säureanhydride + basische Oxide → Salze

Säure-Base-Chemie

Johannes Nicolaus Brønsted (1879 - 1947)

Theorie von Brønsted:

Säure: Brønsted-Säuren sind Protonendonatoren.

Base: Brønsted-Basen sind Protonenakzeptoren.

Probleme:

Konzept nur auf Wasserstoffverbindungen anwendbar

Z.B.

HCI
$$\longrightarrow$$
 CI + H+ Säure-Base-Paar 1

2. H + H - OI \longrightarrow H-N-H + IOI \longrightarrow H-N-H + IOI \longrightarrow H2O + H+ \longrightarrow H3O+ Säure-Base-Paar 2

3. H + H - OI \longrightarrow H-N-H - OI \longrightarrow H-N-H + IOI \longrightarrow HCI + H2O \longrightarrow CI + H3O+ HCI + H3O+

z.B.

$$HCI \longrightarrow CI^- + H^+$$
 Säure-Base-Paar 1

 $H_2O + H^+ \longrightarrow H_3O^+$ Säure-Base-Paar 2

 $HCI + H_2O \longrightarrow CI^- + H_3O^+$

Protonenübergangsreaktion: konjugiertes Säure-Base-Paar 2 Säure 1 + Base 2 Base 1 + Säure 2 HA konjugiertes Säure-Base-Paar 1

Protolyse: Proton wird von der Säure auf die Base übertragen

Zwei konjugierte Säure-Base-Paare Stehen miteinander im Gleichgewicht.

Säure-Base-Chemie

Oxosäuren

oder auch Sauerstoffsäuren genannt (Anorganik) wie z.B. Schwefelsäure H₂SO₄, Phosphorsäure H₃PO₄, Salpetersäure HNO₃

Baugruppe:

$$H \stackrel{a}{\longrightarrow} O \stackrel{b}{\longrightarrow} Z$$

O hat (fast) immer die gleiche Größe

Säurestärke hängt in erster Linie von Elektronegativität von Z ab.

Wenn:

Z: Metall-Atom \rightarrow geringe Elektronegativität \rightarrow Elektronenpaar b gehört $O \rightarrow$ Verbindung ist ionisch aufgebaut z.B. $HO^ Na^+$

Säure-Base-Chemie

Z: Nichtmetall-Atom mit hoher Elektronegativität \rightarrow Bindung b ist kovalent und weniger leicht spaltbar \rightarrow Z-Atom teilt sich Elektronenpaar mit dem O-Atom und beansprucht somit eines seiner Elektronen

Selbst wenn das O-Atom das elektronegativere Atom ist, ist seine Elektronendichte etwas verringert \rightarrow Auswirkung auf die Bindung a

→ O-Atom übt Elektronenzug auf die Elektronen der H-O-Bindung aus und erleichtert die Abspaltung des H⁺ z.B. Hypochlorige Säure HOCl

Je elektronegativer Z, desto mehr Elektronendichte wird der H-O-Bindung entzogen, desto leichter lässt sich H⁺ abspalten

HOI < HOBr < HOCl Säurestärke nimmt zu

Säure-Base-Chemie

Ebenfalls:

Aussage über Säurestärke von Molekülen, in denen die H-Atome nicht am O-Atom gebunden sind

z.B. HCl und H₂S

Zwei Faktoren beeinflussen die Säurestärke:

- Elektronegativität
- Atomgröße des Elements, mit dem der Wasserstoff verbunden ist

 $NH_3 < H_2O < HF$ Säurestärke nimmt zu F entzieht dem H-Atom am stärksten Elektronendichte, NH_3 in H_2O Base

 $PH_3 < H_2S < HCl$ Säurestärke nimmt zu PH_3 reagiert nicht mit H_2O

HF < HCl < HBr < HI \rightarrow H⁺ lässt sich leichter von einem großen Atom abspalten als von einem kleinen \rightarrow Valenzelektronenwolke ist auf größeren Raum verteilt \rightarrow H⁺ ist weniger fest gebunden

Hier ist die Elektronegativität umgekehrt, aber die Atomgröße ist von größerer Bedeutung als die Elektronegativität
→ innerhalb einer Periode sind die kleinen Unterschiede in den Atomgrößen unbedeutend

Säure-Base-Chemie

Säure-Base-Begriff nach Brönsted und Lowry

- Eine Säure-Base-Reaktion ist eine Protonen-Übertragungsreaktion
- Dabei entsteht aus der Säure die zu ihr konjugierte Base und umgekehrt:

$$HO-H + H_2O \longleftrightarrow H_2O-H^+ + OH^-$$

- Wasser überträgt ein Proton (auf ein anderes Wassermolekül) und wirkt damit als Säure; selbst geht es dabei in die konjugierte Base OH- über
- Diese Protonenübertragung ist eine dynamische Gleichgewichtsreaktion, für die man nach dem Massenwirkungsgesetz eine Gleichgewichtskonstante "K" definieren kann

Säure-Base-Chemie

Gilbert Newton Lewis (1875-1946)

Lewis-Säure-Base-Theorie

Säure: Lewis-Säuren sind Elektronenpaarakzeptoren

Base: Lewis-Säuren sind Elektronenpaardonatoren

Probleme:

- Stärke von Säuren und Basen (keine Säurekonstante), qualitative Beschreibung durch HSAB-Konzept
- Amphotere Verbindungen z.B. Wasser

HSAB-Konzept: Hard and soft acids and bases = Konzept der harten und weichen Säuren und Basen.

- → Abschätzung der Stabilität und Reaktivität von Verbindungen.
- harte Teilchen: hohe Ladungsdichte, kleiner Radius, kaum polarisierbar
- weiche Teilchen: geringe Ladungsdichte, großer Radius, leicht polarisierbar

Eine Säure-Base-Reaktion besteht in der Ausbildung einer Atombindung zwischen einer Lewis-Säure und einer Lewis-Base. Die Säure- bzw. Basenstärke hängt daher vom jeweiligen Reaktionspartner ab.

Beispiele für Lewis Säuren: BF₃, AlCl₃, CO₂, SO₃, SiCl₄, PF₅, SbCl₅, fast alle alle Metallkationen, **H**⁺

Beispiele für Lewis Basen: NH₃, Cl⁻, CN⁻, N₃⁻, H₂O, CO, ...

Säure-Base-Chemie

Einteilung von Lewis-Säuren und Basen: HSAB-Prinzip (principle of hard and soft acids and bases)

- Unterscheidung in harte und weiche Säuren und Basen
- Harte Basen verbinden sich vorzugsweise mit harten Säuren (eher ionische Bindung)
- Weiche Säuren verbinden sich vorzugsweise mit weichen Basen (kovalente Bindung)

Harte Säuren und Basen		Weiche Säuren und Basen	
schwer polarisierbar, große EN, kleine Ausdehnung => Je höher geladen, je höher Oxidationsstufe, desto härter.		leicht polarisierbar, große Ausdehnung	
Harte Säuren: H ⁺ , Li ⁺ , Mg ²⁺ , Al ³⁺ , B ³⁺ , Ti ⁴⁺	Harte Basen: H ₂ O, OH ⁻ , F ⁻ , Cl ⁻ , NH ₃ , O ²⁻ , CO ₃ ²⁻ , PO ₄ ³⁻ , SC N ⁻ , SO ₄ ²⁻	Weiche Säuren: Pt ²⁺ , Pd ²⁺ , Au ⁺ ; Hg ²⁺ , Hg ₂ ²⁺ , Cd ²⁺ , Cu ²⁺ , Pb ²⁺ , Ag ⁺	Weiche Basen: S ²⁻ , C N ⁻ , I ⁻ , S CN ⁻ , CO

Abschätzen der Löslichkeitstrends von Silberhalogeniden anhand des HSAB-Prinzips

- Weichheit des Anions steigt
- Zunehmende Bevorzugung/Festigkeit der Bindung
- · Löslichkeit des Salzes sinkt

HF

FAKULTÄT FÜR CHEMIE UND PHARMAZIE

Säure-Base-Chemie

Nat: harte Saure, metall-Jon F-: harte Base -> stabile Verbindung (im Jegensatz NaI) oder Bindung zwischen harten Spezies \rightarrow eher ionischer Charakter

Weiche Lewis-Base-Addukte → kovalenter Charakter

Säure-Base-Chemie

pH-Wert

Acidität einer wässrigen Lösung ist durch die Konzentration an H₃O⁺ gegeben

- → in Praxis: Konzentrationsangaben übersteigen Zehnerpotenzen
 - → Einführung eines logarithmischen Maßes um handlichere Werte zu erhalten

Einführung es pH-Wertes

Definition: negativer dekadischer Logarithmus der H₃O⁺ - Konzentration

$$pH = -\lg c(H_3O^+)$$

Entsprechend für die OH⁻ - Konzentration gilt:

$$pOH = -\lg c(OH^{-})$$

Säure-Base-Chemie

c(H₃O+) in mol/l	dek. Log.	pH- Wert	
1	100	0	0
0,1	10-1	-1	1
0,001	10-3	-3	3
0,00001	10-5	-5	5
0,0000001	10-7	-7	7
0,00000001	10-9	-9	9
0,0000000001	10-11	-11	11
0,00000000000001	10-14	-14	14

Søren Peter Lauritz Sørensen (1868-1939)

Substanz	PH - Wert	Art	
Batteriesäure	< 0		
Magensäure (nüchtern)	1,0 – 1,5		
Zitronensaft	2,4		
Cola / Limonaden	2,0 - 3,0		
Essig	2,5		
Orangensaft / Apfelsaft	3,5		
Wein	4,0		
Saure Milch	4,5	couler	
Bier	4,5 – 5,0	sauer	
Saurer Regen	< 5,0		
Kaffee	5,0		
Tee	5,5		
Hautoberfläche (Mensch)	5,5		
Regen	5,6		
Mineralwasser	6,0		
Milch	6,5		
Wasser	6,5 - 8,5	sauer	
Speichel (Mensch)	6,5 . 7,4	alkalisch	
Reines Wasser	7,0	neutral	
Blut (Mensch)	7,4		
Meerwasser	7,5 – 8,4		
Pankreassaft (Mensch)	8,3		
Seife	9,0 – 10,0	alkalisch	
Haushalts-Ammoniak	11,5	basisch	
Bleichmittel	12,5		
Beton	12,6		
Natronlauge	13,5 - 14		

Säure-Base-Chemie

Autoprotolyse

H₂O kommt als Säure und Base vor

$$H_2O + H_2O \rightleftharpoons H_3O^+ + OH^-$$

Das Protolysegleichgewicht (in reinem Wasser) ist fast vollständig auf der linken Seite.

Massenwirkungsgesetz anwenden:

allgemein
$$K = \frac{c(C)^{c}c(D)^{d}}{c(A)^{a}c(B)^{b}}$$

für Autoprotolysegleichgewicht des Wassers

$$K = \frac{c(H_3O^+)c(OH^-)}{c(H_2O)2}$$

bei 25°C
$$S(470)=0$$
, $9979/cm^3$ $cm^3=1mL$
 $S=\frac{m}{V}$ => 9979 in $1L$
 $C=\frac{m}{V}=\frac{m}{N}=\frac{997}{18,019/mol}=55,36\frac{mol}{L}$

M: molare Masse: $M(H_20)=18,019/mol$
 $M=\frac{m}{N}=\frac{m}{N}=\frac{m}{N}$
 $M=\frac{m}{N}=\frac{m}{N}=\frac{m}{N}$

Da das Gleichgewicht nahezu auf der linken Seite steht, d.h. die Konzentration des nicht protolysierten Wassers praktisch der Gesamtkonzentration des Wassers entspricht

$$c(H_20) = 55,36 \text{ mol/L}$$

→ Konzentration des undissozierten Wassers kann als konstant angenommen werden und der Ausgangskonzentration gleichgesetzt werden

Säure-Base-Chemie

Ionenprodukt des Wassers

$$[H_3O^+][OH^-] = K \cdot [H_2O]^2 = K_w = 1 \cdot 10^{-14}$$
 mit K (25°C) = 3,25·10⁻¹⁸

$$= 3,25 \cdot 10^{-18} \cdot (55,36 \text{ mol/L})^2$$

$$= 1 \cdot 10^{-14}$$
 einfachheitshalber nur Zahlenwert

1. Logarithmusgesetz: log(a * b) = log(a) + log(b)

4. Logarithmusgesetz:

$$\log(\sqrt[y]{x}) = \frac{1}{y}\log(x)$$

$$[H_3O^+][OH^-] = K_w$$

 $10^{-7} \cdot 10^{-7} = 10^{-14}$
 $pH + pOH = 14$

$$[H_3O^+] = [OH^-] = \sqrt{K_w}$$
 in reinem H_2O entstehen zu gleichen Teilen H_3O^+ und OH^-

$$\sqrt{10^{-14}} = 10^{-7}$$
 mit $pH = -lg[H_3O^+]$

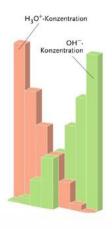
$$pH = -\lg 10^{-7}$$

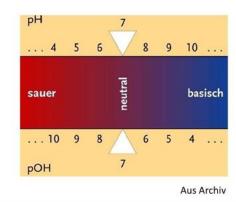
$$pH = 7$$

$$pOH = -lg[OH^{-}] = -lg 10^{-7} = 7$$

In Praxis pH-Skala von 0 bis 14

Säure-Base-Chemie


Löst man Säuren (H⁺-Donatoren) in Wasser, so ist die $c(H^+) > 1 \times 10^{-7}$ mol/L: Lösung ist sauer


Löst man Basen (H⁺-Akzeptoren) in Wasser, so ist die $c(OH^-) > 1 \times 10^{-7}$ mol/L: Lösung ist basisch

pH =
$$-log[H_3O^+]$$
; $[H_3O^+] = 10^{-pH}$ pOH = $-log[OH^-]$; $[OH^-] = 10^{-pOH}$

$$pH + pOH = -logK_w = pK_W = 14$$

Der pH-Wert ist der negativ dekadische Logarithmus der Wasserstoffionen-Konzentration!

$$K_W$$
 (25 °C) = $c(H_3O^+) \times c(OH^-) = 10^{-14} \text{ mol}^2/L^2$

Das Produkt der $[H^+]$ und der $[OH^-]$ in Wasser (Ionenprodukt K_W) ist eine **Konstante**: Wenn die Konzentration der einen Ionensorte größer wird, muss die andere kleiner werden, um ein konstantes Produkt zu gewährleisten.