

Vorlesung zum Lehramtsgrundpraktikum

Dr. Magdalena Rusan

Kapitel 1 Wasser

17.10.2025

Praktikum

Informationen

Chemisches Grundpraktikum für Lehramtsstudierende

Das Grundpraktikum (auch LAAC1 oder auch quantitativer Teil) für Lehramtsstudierende besteht aus:

Begleitvorlesung während des Wintersemesters

praktischer Teil (Praktikum) in den Wintersemesterferien

Teil Anorganische Chemie (Dr. Rusan)

Teil Physikalische Chemie (Prof. Dr. Müller-Caspary)

Vorlesungsfolien zum AC-Teil: https://www.cup.lmu.de/ac/rusan/teaching/vorlesung-zum-laac1-praktikum/

Klausurtermine zur Vorlesung:

Klausur: 13.02.2026 von 10:00 bis 12:00 Uhr im Liebig-Hörsaal

Wiederholungsklausur: 08.04.2026 von 10:00 bis 12:00 Uhr im Buchner-Hörsaal

Anmeldung zur Klausur und Wiederholungsklausur:

Im LSF; Beginn 06.01.2026

Praktikum

Informationen

Praktikum

- Das Grundpraktikum für Lehramtsstudierende wird als 3- wöchiges, ganztägiges Blockpraktikum vom 02.03.2026 bis 20.03.2026 (Mo.-Fr. 09:00-17:00) in den Praktikumsräumen von Haus D durchgeführt.
- Eine Vorbesprechung/Einführung inkl. Sicherheitseinweisung zum Praktikum findet am ersten Praktikumstag statt. Hier erfolgt auch die Kurseinteilung zum Praktikum! Die Teilnahme daran ist verpflichtend!
- Nach dem Abschicken der Registrierung erscheint eine Bestätigungsseite Ihrer Anmeldung. Diese ist auszudrucken und bei der Vorbesprechung vorzulegen! Ohne Bestätigung kein Platz!
 Es werden sonst keine weiteren Bestätigungen etc. telefonisch oder per Email gegeben!!!!!
 Mit der Anmeldung entsteht kein Anspruch auf einen Praktikumsplatz!

Anmeldung zum Praktikum ist notwendig!

Anmeldung: https://www.cup.lmu.de/anmeld/acla1prak/index.php (Anmeldezeitraum: 1.12.2025 bis 1.2.2026)

Praktikum

Informationen

Praktikum

Voraussetzungen:

Eine der beiden folgenden Zulassungsvoraussetzungen muss am Termin der Vorbesprechung erfüllt sein, um das Praktikum antreten zu können:

- bestandene Klausur zur Anorganische Chemie 1 (Experimentalvorlesung), T1AA, oder
- bestandene Klausur zur "Begleitvorlesung zum Chemischen Grundpraktikum" (T1LA)

Praktikum

Informationen

Bei weiteren Fragen zum Praktikum wenden Sie sich bitte an Dr. Magdalena Rusan:

march@cup.uni-muenchen.de

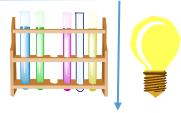
Büro D1.055

Vorlesung zum Teil Anorganische Chemie:

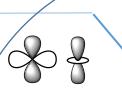
• Vorlesungsfolien: https://www.cup.lmu.de/ac/rusan/teaching/vorlesung-zum-laac1-praktikum/

Videos und Fotos (Experimente, Tutorials etc.) auf Instagram: Chemistry_Tiger https://www.youtube.com/@GlobalChemistryClassroom

Vorlesung zum Teil Physikalische Chemie: Prof. Knut Müller-Caspary



Praktikumsinhalt


Themengebiete

Grundlegende Labortechniken und sicheres Arbeiten

Physikalisch-chemische Grundlagen: Reaktionskinetik, Farbe

Grundlegende "anorganische"
Reaktionstypen in Wasser:
Säure-Base-Chemie, Redox-Chemie,
Koordinationschemie, Festkörper
und Lösung

Vorlesungsinhalt

Inhalt der Vorlesung – Anorganischer Teil

- Wasser Lösungsmedium
- Chemisches Gleichgewicht und wässrige Lösungen
- Löslichkeitsprodukt
- Säure-Base Chemie (pH-Werte, Titrationen, Puffer)
- Redoxreaktionen
- Elektrochemie
- Koordinationschemie



Wasser – H₂O

Wasservorkommen

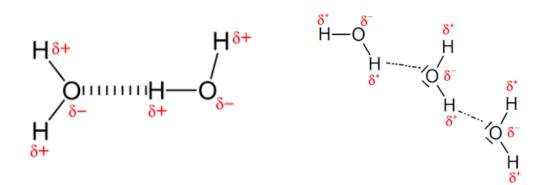
¾ der Erde ist mit Wasser bedeckt: das sind
 1.65 Trilliarden Liter

Meere	83,51 %
Nicht förderbares Grundwasser (zu tief)	15,45 %
Polareis	1,007 %
Flüsse	0,015 %
Förderbares Grundwasser	0,015 %
Atmosphäre	0,0008 %

Wasservorkommen der Erde

Erde zu 71% von Wasser bedeckt, davon:

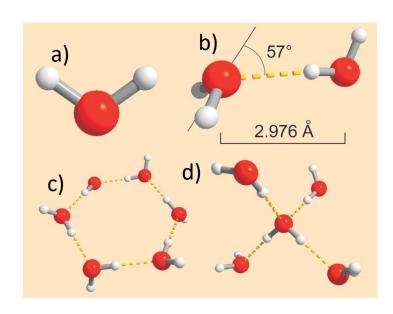
	Weltmeere (Salzwasser) Süßwasser	97,39 2,61	%
	Polareis, Gletscher	2,01	%
	Grundwasser, Bodenfeuchte	0,58	9/
	Wasser in Seen und Flüssen	0.02	9/
1	Atmosphäre	0,001	9/
A	Organismen	0.001	9/
Y	Süßwasser gesamt	2,61	%
	Süßwasser		
1	Polareis, Gletscher, Schnee	68.7	9/
/	(davon Antarktis	61,7	%
	Bodeneis	0,86	9/
	Grundwasser	30,1	9/
	(davon bis 100m Tiefe	2,6	%
	Bodenfeuchte	0,05	%
	Süßwasserseen	0,26	%
	Moore, Sümpfe	0,03	%
	Flüsse	0,0006	%
	Organismen	0,003	%
	* 1		-01



Wasser – H₂O

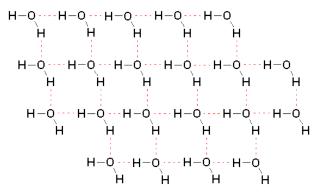
Besonderheiten

- H₂O kommt auf der Erde in allen drei Aggregatzuständen vor fest (Eis), flüssig (Wasser) und gasförmig (Wasserdampf)
- Schmelzpunkt 0 °C, Siedepunkt 100 °C, Bindungswinkel von 104.4°
- H₂O ist ein Dipolmolekül und besitzt starke polare Bindungen: Dipolmoment von 1.85 D
- Wasserstoffbrückenbindungen treten auf

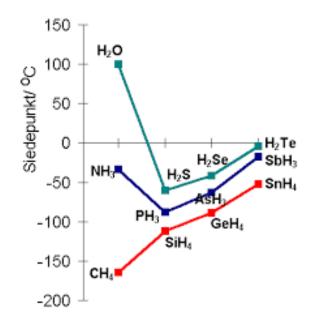


elektrostatische Anziehung zwischen H-Atom und O-Atom des Nachbarmoleküls

Wasser – H₂O


Wasserstoffbrückenbindungen

Die Struktur a) eines einzelnen Wassermoleküls und b) eines über eine Wasserstoffbrücke verbundenen Dimers. c) Ringförmiger Wassercluster und d) tetraedrische Struktur eines von vier Nachbarn umgebenen Zentralmoleküls.

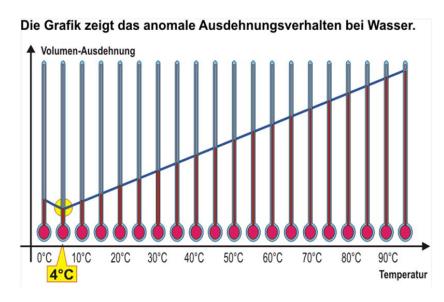

Flüssiges H₂O:

- Zufallsnetzwerk von H-Brücken
- H-Brückennetzwerk nicht statisch, es fluktuiert
- Lebensdauer einer H-Brückenbindung im Bereich von nur 10⁻¹²s

https://www.uni-ulm.de

→ Wasser hat hohen Siedepunkt

http://www.chemgapedia.de/vsen gine/vlu/vsc/de/ch/11/aac/vorles ung/kap_4/vlu/wechselw.vlu/Page /vsc/de/ch/11/aac/vorlesung/kap_4/kap4_4/kap44_5/kap445_3.vsc ml.html

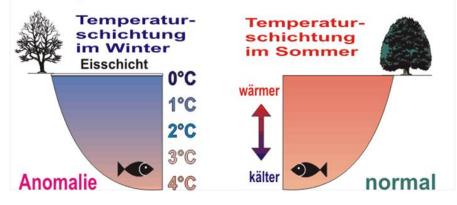


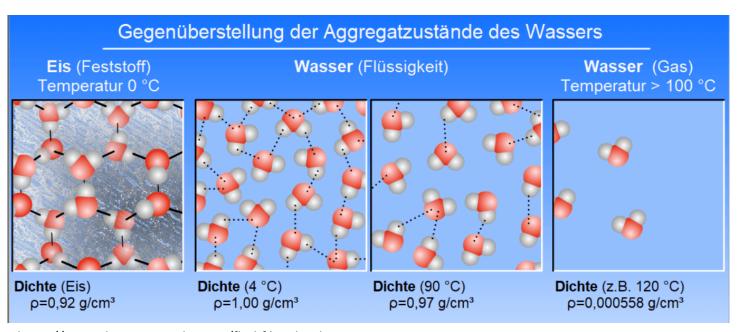
Wasser – H₂O

Anomalien

- Dichte abhängig von der Temperatur: je größer die Temperatur, desto stärker bewegen sich die Teilchen
- Normalfall: Feststoffe haben h\u00f6here Dichte als Fl\u00fcssigkeiten und Gase
 - → Bei steigender Temperatur nimmt Dichte bei Flüssigkeiten ab
- Gase haben die niedrigste Dichte
- Besonderheit des Wassers: Feststoff Eis schwimmt auf Wasser: hat also eine geringere Dichte
- Wasser hat größte Dichte bei Normaldruck bei 4°C : Dichteanomalie
- → Grund: Anordnung der Wassermoleküle: festes weiträumiges Molekülgitter

http://www.chemie-macht-spass.de/2003-phaenomen-wasser-02.html


Wasser – H₂O


Anomalie: Wasser hat bei +4°C seine größte Dichte.

Von 0°C bis 4°C zieht es sich bei Erwärmung
zusammen. Erst oberhalb 4°C dehnt es sich aus.

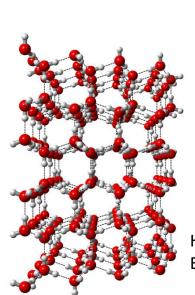
Bedeutung der Anomalie in der Natur:

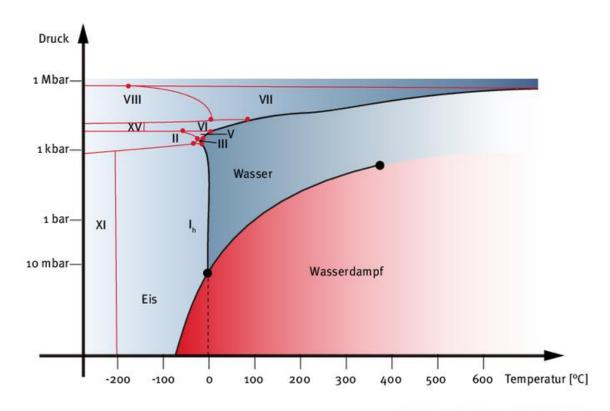
Die Temperaturschichtung eines entsprechend tiefen Sees ist im Winter so, dass die Fische in "Winterstarre" überleben können.

https://www.chemie-interaktiv.net/flashfilme.html

http://www.chemie-macht-spass.de/2003-phaenomen-wasser-02.html

Grund: Wasserstoffbrückenbindungen → nicht der einzige Grund
Zwischen den H₂O-Molekülen wirken auch Van der Waals-Kräfte
→ sind ebenfalls entscheidend für Geometrie und Flexibilität der H-Brücken


Wasser – H₂O


Dichteanomalie

Dichte von Eis bei 0 °C beträgt 0.92 g/cm³

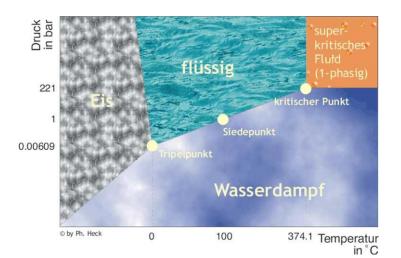
- → beim Schmelzen bricht Gitterordnung zusammen
- → H₂O-Moleküle können sich dichter zusammenlagern
- → Dichtemaximum von Wasser bei 4 °C und beträgt 1.00 g/cm³

Verschiedene Modifikationen von Eis: bisher sind 17 kristalline und 5 amorphe bekannt

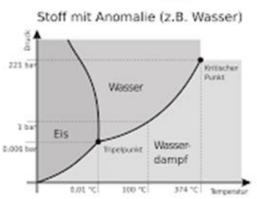
CC by-nc-nd | www.weltderphysik.de

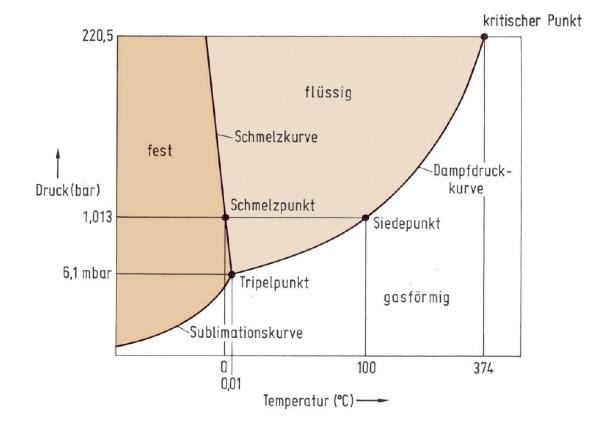
Hexagonales Eis

Wasser – H₂O


Druckanomalie

Anomalien

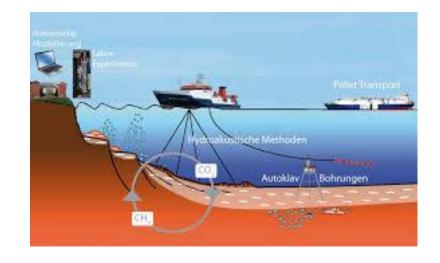

Aggregatzustand hängt von Druck und Temperatur ab


• Am Tripelpunkt können alle drei Aggregatzustände

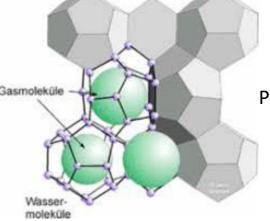
gleichzeitig existieren

© 2007 Walter de Gruyter, Riedel/Janiak: Anorganische Chemie

Wasser – H₂O



Weitere Eigenschaften


- sehr beständige Verbindung: bei 2000 °C nur 2% der H_2O moleküle in H_2 und O_2 -Moleküle thermisch gespalten
- Wasservorkommen der Erde
- sehr hohe Wärmekapazität
- Leitfähigkeit
- Gashydrate: bei hohem Druck und niedriger Temperatur bilden Wasser und Gas eine eisähnliche Verbindung z.B. Methanhydrat

Methanhydrat: brennendes Eis

→ nicht-stöchiometrische Verbindungen, in denen die Wassermoleküle (Strukturmoleküle) Käfigstrukturen aufbauen, und Gasmoleküle (als Gastmoleküle) einschließen: Clathrate

Pentagondodekaeder

Wasser als Lösungsmittel

Chemie im wässrigen Milieu

- Aus dem Alltag bekannt: Auflösen von Zucker, Salz, Tabletten, Herstellung von "Sodawasser"
- Ist das jetzt "physikalisch" oder "chemisch"?
 - → sehr oft ist der Lösungsvorgang mit einer chemischen Reaktion verbunden

weil: Wasser besitz folgende Eigenschaften:

→ Autoprotolyse des Wassers

→ Wasser als Säure

Autoprotoloyse des Wassers $H_2O + H_2O \leftrightarrow H_3O^+ + OH^-$

Bei dieser Autoprotolyse wird ein Proton von einem Wassermolekül auf ein anderes übertragen. Damit erfüllt Wasser die Definition einer Brönsted-Säure.