Anorganische Experimentalchemie

3. Übung:

Massenwirkungsgesetz und Kinetik

- 1. Erstellen Sie die entsprechenden Reaktionsgleichungen. Kennzeichnen Sie durch Pfeile die Richtung, in die sich das Gleichgewicht infolge der angegebenen Änderung verlagert!
- (1) Kohlenstoff reagiert mit Wasser zu Kohlenmonoxid und Wasserstoff.
- (2) Stickstoff und Wasserstoff reagieren zu Ammoniak.
- (3) Kohlenstoffmonoxid und Wasser reagieren zu Kohlenstoffdioxid und Wasserstoff.
- (4) Kohlenstoffdioxid und Kohlenstoff reagieren zu Kohlenstoffmonoxid.

Reaktionsgleichung	∆ H in kJ/mol	Verschiebung bei Erhöhung	
		der Temperatur	der Konzentration an
(1)	+ 175,4		H ₂ O
(2)	- 92,0		H ₂
(3)	- 2,9		СО
(4)	+ 172,4		СО

- 2. Massenwirkungsgesetz und Gleichgewichtskonstante Formulieren Sie für folgenden Gleichgewichtsreaktion jeweils die Reaktionsgleichung und das Massenwirkungsgesetz!
 - a) Schwefeldioxid wird durch Luftsauerstoff zu Schwefeltrioxid oxidiert.
 - b) Schwefeltrioxid addiert sich an H₂SO₄ zu Dischwefelsäure.
 - c) Dischwefelsäure wird hydrolisiert zu Schwefelsäure.
 - d) Schwefelsäure wird durch 2 Äquivalente Natriumhydroxid neutralisiert.
- 3. Für die Reaktion N_2O_4 (g) \rightarrow 2 NO_2 (g) wurden bei 25°C folgende Konzentrationen für ein im Gleichgewicht befindliches Gemisch gefunden:

$$c(N_2O_4) = 4,27 \cdot 10^{-2} \text{ mol/L}$$

 $c(NO_2) = 1,41 \cdot 10^{-2} \text{ mol/L}$

Wie groß ist K_c bei 25°C?

4. Kinetik Reaktion 0. Ordnung

Die Spaltung von Brommethan (H_3CBr) zu Ethen (C_2H_4) und HBr an einem Zinkkatalysator ist eine Reaktion 0. Ordnung: $C_2H_5Br \rightarrow C_2H_4 + HBr$

Nach 12 min sind von anfänglich einem Mol Brommethan, noch 0,4 Mol vorhanden. Zeichnen Sie ein Konzentrations-Zeit-Diagramm (y-Achse: c; x: Achse: t) dieser Reaktion. Nach wieviel Minuten ist kein Brommethan mehr vorhanden?

5. Kinetik Reaktion 1. Ordnung

Die Halbwertszeit des radioaktiven Zerfalls von ¹⁴C (ein Prozess erster Ordnung) beträgt 5730 Jahre. In einer archäologischen Probe fand man Holz, welches nur noch 72% des ¹⁴C Gehalts von lebenden Bäumen aufwies. Wie alt ist das Fundstück?

- 6. Wir betrachten erneut eine Reaktion erster Ordnung.
 Anfangskonzentration = 0,5 mol. Halbwertszeit = 40 s. Welche Konzentration liegt nach 70 s vor?
- 7. Die Reaktionsgeschwindigkeit der Sarin-Hydrolyse verläuft unter welchen Bedingungen a) schnell, b) langsam, c) mittel?
- 8. Wie nennt man ein heterogenes Gemisch, das aus
 - a) einer festen und einer flüssigen Phase bzw.
 - b) aus 2 nichtmischbaren Flüssigkeiten
- c) einer festen und einer gasförmigen Phase besteht?
- 9. Nennen Sie zwei Methoden mit denen man ein homogenes Gemisch trennen kann und die dazugehörige Eigenschaft, auf der die Trennung basiert.
- 10. Bohrsches Atommodell: n ist die Hauptquantenzahl. Der Atomradius r ist proportional zu n^x. Die Energie E ist proportional zu n^y. Welche Werte besitzen x und y?
- 11. Welche Flammenfarben erwarten Sie für:
 - (a) Na
 - (b) Ba
 - (c) Sr
 - (d) Cu
 - (e) B(OMe)₃
- 12. Ordnen Sie nach abnehmender Energie: gelbes Licht, blaues Licht, Mikrowellen, Radiowellen, Röntgenstrahlung, Infrarotstrahlung, Ultra-Violettes Licht.