Anorganische Experimentalchemie 5. Übung: Säure-Base Chemie

1. Berechnen sie Molantat und Molantat von
a. 37 %iger HCl (ρ = 1.2 g/mL)
b. 96 %iger H ₂ SO ₄ (ρ = 1.84 g/mL)
2. Welche ist die konjugierte Base von:
a) H ₃ PO ₄
b) H ₂ PO ₄ -
c) NH ₃ d) HS ⁻
e) H ₂ SO ₄
f) HCO ₃ -
g) Ameisensäure
h) HN ₃
3. Die Lösung einer schwachen Säure HX hat einen pH-Wert von 3.10. Wie groß ist die
Konzentration an H₃O⁺.
4. Wie groß sind die Konzentrationen c(H₃O⁺) und c(OH⁻) in folgenden Lösungen:
a) 0.015 mol/L HNO ₃
b) 0.0025 mol/L Ba(OH) ₂
c) 0.00030 mol/L HCI
d) 0.016 mol/L Ca(OH) ₂
5. Propansäure (eine einwertige Säure) ist bei einer Konzentration von 0.25 mol/L in
Wasser zu 0.72% dissoziiert. Wie groß ist der pH-Wert und pKs-Wert?
6. Für Milchsäure ist K _S = 1.5·10 ⁻⁴ mol/L
a) Wie groß ist c(H₃O⁺), wenn 0.16 mol/L Milchsäure in Lösung sind.
b) Wie viel Prozent der Milchsäure sind dissoziiert?
7 Fine Saure UV jet hei e0/UV) = 0.45 me1/L === 4.20/ disconting Mis-viel 0/ === 4.51
7. Eine Säure HX ist bei $c^0(HX) = 0.15 \text{ mol/L zu } 1.2\% \text{ dissoziiert. Wie viel } \% \text{ sind bei } c^0(HX) = 0.030 \text{ mol/L dissoziiert?}$

8. Welchen pH-Wert hat eine Lösung von 0.15 mol/L Natriumnitrit

 $(NaNO_2)$? (für HNO_2 : $pK_S = 3.35$)

- 9. Welchen pH-Wert hat eine Lösung von 0.1 mol/L Ammoniumacetat (NH₄OAc)? $pK_S(NH_4^+) = 9.2$; $pK_S(HOAc) = 4.7$
- 10. Welchen pH-Wert hat eine Lösung von 0.01 mol/L Natriumhydrogencarbonat (NaHCO₃)?
- 11. Geben sie die Summenformel und Struktur folgender Moleküle an:
 - Hypochlorige Säure
 - Perchlorsäure
 - Eisen(III)sulfat hexahydrat
 - salpetrige Säure
 - Phosphorpentaoxid
 - Dinatriumhydrogenphosphat dodecahydrat
 - Bromsäure
 - Kaliumhydroxid
 - Schwefelwasserstoff
 - Essigsäure
 - Methanol
 - Fluorwasserstoff
 - Triethylamin