Warning: Undefined array key "HTTP_ACCEPT_LANGUAGE" in /home/webdocs/site/assets/cache/FileCompiler/site/templates/_init.php on line 36

Deprecated: substr(): Passing null to parameter #1 ($string) of type string is deprecated in /home/webdocs/site/assets/cache/FileCompiler/site/templates/_init.php on line 36
Faculty for Chemistry and Pharmacy LMU Munich - Strukturbiologie - Erster 3-D-Blick in menschliche Proteinfabriken

Strukturbiologie - Erster 3-D-Blick in menschliche Proteinfabriken

May 20, 2013

Ribosomen sind die Proteinfabriken der Zelle. LMU-Wissenschaftlern gelang es nun erstmals, ihre Architektur in menschlichen Zellen aufzuklären. Dabei zeigte sich: In komplexen Organismen sind auch die Ribosomen komplexer. Ribosomen sind große Molekülkomplexe, in denen wie am Fließband Tausende von Bausteinen zu Proteinen zusammengesetzt werden. Die molekularen Strukturen dieser Proteinbiosynthese-Maschinen konnten für Bakterien vor etwa zehn Jahren aufgeklärt werden, was später mit dem Nobelpreis gewürdigt wurde. Inzwischen ist es Wissenschaftlern auch gelungen, mittels Röntgenkristallographie die Struktur von Ribosomen einfacher eukaryontischer Organismen wie Hefe aufzuklären.

Die komplexere Architektur der Ribosomen höherer Eukaryonten dagegen entzog sich bisher allen Analysen", sagt Professor Roland Beckmann vom Genzentrum der LMU. Dieser Durchbruch ist Beckmanns Team nun gelungen: Mittels Einzelpartikel-Kryo-Elektronenmikroskopie rekonstruierten die Wissenschaftler aus mehreren Tausend elektronenmikroskopischen Bildern erstmals die dreidimensionale Struktur der Ribosomen höherer Organismen - und zwar von Fruchtfliege und Mensch.

Der Vergleich der nun aufgeklärten Struktur mit derjenigen einfacherer Ribosomen ermöglicht einen genaueren Einblick in die Evolution dieser zellulären Maschinen und enthüllt zudem interessante Unterschiede: "Die Ribosomen von höheren Eukaryonten, insbesondere des Menschen, haben eine Extraschicht von teilweise sehr langen RNA-Tentakeln. Vermutlich spielen diese Tentakel für die Interaktion des Ribosoms mit der komplexeren Umwelt in Zellen höherer Eukaryonten eine wichtige Rolle", sagt Beckmann.

Diese neuen Einblicke in die Struktur werden in Zukunft auch weitere Rückschlüsse auf die Funktion der komplexen Zellmaschinerie ermöglichen: "Wir haben mit unserer Arbeit den Grundstein gelegt für weitere biochemische, molekularbiologische und mechanistische Studien zur Proteinbiosynthese im Menschen", sagt Beckmann.

Die Arbeiten wurden von der DFG im Rahmen des SFB 646 "Regulatory Networks in Genome Expression and Maintenance", des Graduiertenkollegs 1721 "Hybrid Methods in Genome Biology" sowie des Exzellenzclusters "Center for Integrated Protein Science Munich" (CIPSM) gefördert. (Nature Mai 2013)