Nucleophilic Aromatic Substitution

Dorian Didier
dorian.didier@cup.uni-muenchen.de
1. General considerations
2. Addition-elimination mechanism
3. Vicarious nucleophilic substitution
4. The π-arene case
5. Elimination-addition mechanism
1. General considerations
2. Addition-elimination mechanism
3. Vicarious nucleophilic substitution
4. The π-arene case
5. Elimination-addition mechanism
Chapter: Nucleophilic Aromatic Substitution

1. General considerations

2. Addition-elimination mechanism

Nucleophilic Aromatic Substitution = $S_N\text{Ar}$

![Diagram showing Nucleophilic Aromatic Substitution](image)

EWG = Electron **Withdrawing Group**

Electrophilic Aromatic Substitution = $S_E\text{Ar}$

![Diagram showing Electrophilic Aromatic Substitution](image)

EDG = Electron **Donating Group**
1. General considerations

2. Addition-elimination mechanism

Nucleophilic Aromatic Substitution = $S_{N}\text{Ar}$

\[
\begin{align*}
\text{EWG} & \quad \text{X} \quad \text{Nu}^- \quad \rightarrow \quad \text{EWG} \quad \text{Nu} \\
\end{align*}
\]

\[S_{N}\text{Ar} \quad \neq \quad S_{N}2\]
Chapter: Nucleophilic Aromatic Substitution

1. General considerations

2. Addition-elimination mechanism

Nucleophilic Aromatic Substitution = $S_{N}Ar$
1. General considerations

2. Addition-elimination mechanism

Nucleophilic Aromatic Substitution = $S_{N}Ar$

- Usually requires an EWG for stabilization of the intermediate (Meisenheimer complex)
- Exceptions to the presence of an EWG:
 - *intra* molecular reaction (*Smiles, Clayden or Neuman-Kwart rearrangements*)
 - *aryne* formation (*elimination-addition mechanism*)
 - *external* activation (*metal π-arene complex formation*)
Table of contents

1. General considerations
2. Addition-elimination mechanism
3. Vicarious nucleophilic substitution
4. The π-arene case
5. Elimination-addition mechanism
Chapter: Nucleophilic Aromatic Substitution

1. General considerations
2. Addition-elimination mechanism
3. Vicarious nucleophilic substitution

Classical $S_{N}Ar$

EWG $\xrightarrow{\text{Nu}^-}$ $\text{EWG} \xrightarrow{\text{Nu}^-}$ EWG

Smiles rearrangement

EWG $\xrightarrow{\text{BH}}$ $\text{EWG} \xrightarrow{\text{BH}}$ EWG

Truce-Smiles / Clayden rearrangement

EWG $\xrightarrow{\text{BH}}$ $\text{EWG} \xrightarrow{\text{BH}}$ EWG
Chapter: Nucleophilic Aromatic Substitution

1. General considerations
2. Addition-elimination mechanism
3. Vicarious nucleophilic substitution

Classical $S_N Ar$

\[
\begin{align*}
\text{KHMDS} & \quad \text{THF} \\
0 \degree C & \quad 16h
\end{align*}
\]

Chapter: Nucleophilic Aromatic Substitution

1. General considerations
2. Addition-elimination mechanism
3. Vicarious nucleophilic substitution

$S_N Ar$ - Smiles rearrangement

Chapter:
Nucleophilic Aromatic Substitution

1. General considerations
2. Addition-elimination mechanism
3. Vicarious nucleophilic substitution

S\textsubscript{N}Ar - Cascade sequence

\[
\begin{align*}
\text{F}_3\text{C-} & \text{O} \quad \text{NH}_{\text{Et}} \\
\text{F} & + \\
\text{Cl} & \quad \text{Br} \\
\text{OH} & \quad \text{OH} \\
\end{align*}
\]

\[
\text{K}_2\text{CO}_3, \text{NMP} \quad 150 \, ^\circ\text{C}, \, 2\text{h}
\]

- **step 1:**
- **step 2:**
- **step 3:**

tricyclic structure

Chapter:
Nucleophilic Aromatic Substitution

1. General considerations
2. Addition-elimination mechanism
3. Vicarious nucleophilic substitution

Smiles rearrangement - OH → NH₂ interconversion

1. General considerations
2. Addition-elimination mechanism
3. Vicarious nucleophilic substitution

Smiles rearrangement - OH → NH₂ interconversion
Chapter: Nucleophilic Aromatic Substitution

1. General considerations
2. Addition-elimination mechanism
3. Vicarious nucleophilic substitution

Neuman-Kwart rearrangement - OH → SH interconversion
Chapter: Nucleophilic Aromatic Substitution

1. General considerations
2. Addition-elimination mechanism
3. Vicarious nucleophilic substitution

Truce-Smiles rearrangement / $S_{N}Ar$

Chapter:
Nucleophilic Aromatic Substitution

1. General considerations
2. Addition-elimination mechanism
3. Vicarious nucleophilic substitution

Clayden rearrangement - ring expansion strategy

Table of contents

1. General considerations
2. Addition-elimination mechanism
3. Vicarious nucleophilic substitution
4. The π-arene case
5. Elimination-addition mechanism
2. Addition-elimination mechanism
3. Vicarious nucleophilic substitution
4. The π-arene case

General reaction scheme - VNS

- A “H” is substituted at the aromatic position
- Requires an EWG for stabilization of the Meisenheimer complex
- Requires a leaving group on the nucleophile
Chapter: Nucleophilic Aromatic Substitution

2. Addition-elimination mechanism
3. Vicarious nucleophilic substitution
4. The π-arene case

Application to indole synthesis

Chapter:
Nucleophilic
Aromatic
Substitution

2. Addition-elimination mechanism
3. Vicarious nucleophilic substitution
4. The π-arene case

Application to substituted indoles - Fukuyama’s synthesis of (-)-Eudistomin E

Chapter: Nucleophilic Aromatic Substitution

2. Addition-elimination mechanism

3. Vicarious nucleophilic substitution

4. The π-arene case

\[\text{M. Mąkosza et. al. - Acc. Chem. Res. 1987, 20, 282-289.} \]
Chapter:
Nucleophilic Aromatic Substitution

2. Addition-elimination mechanism
3. Vicarious nucleophilic substitution
4. The π-arene case

Vicarious Nucleophilic Substitution (VNS) – a summary

- The substrate needs an electron-withdrawing group.
- Usually leads to a mixture of regioisomers.

3-steps sequence:
1. Nucleophilic addition
2. β-elimination
3. Protonation/Rearomatization

For more references, see:

Table of contents

1. General considerations
2. Addition-elimination mechanism
3. Vicarious nucleophilic substitution
4. The π-arene case
5. Elimination-addition mechanism
3. Vicarious nucleophilic substitution

4. The π-arene case

5. Elimination-addition mechanism

“Ar” is not electrophilic enough
No stabilization of the Meisenheimer complex

make a better electrophile of “Ar”
create an electron deficiency

“π-arene complex” or “6π-arene complex”
increases the electrophilicity of “Ar”
Chapter:
Nucleophilic
Aromatic
Substitution

3. Vicarious nucleophilic substitution
4. The \(\pi \)-arene case
5. Elimination-addition mechanism

\(\pi \)-arene systems: complexation and decomplexation

\[\text{complexation} \]
- \(X = BF_4, PF_6 \)
- requires mixture of salts

\[\text{difficult decomplexation} \]
- strong oxidant (DDQ...)
- reflux in coordinating solvents

\[\text{easy decomplexation by} \]
- excess of coordinating solvent
- \(h\nu \) / oxidation
- or complexing agents (\(R_3N \), \(R_3P \)...)
Chapter: Nucleophilic Aromatic Substitution

3. Vicarious nucleophilic substitution
4. The π-arene case
5. Elimination-addition mechanism

K. Kirschke et. al. - Phosphorus 1996, 117, 293.
peptide macrocyclization - Rich’s synthesis of K-13

Table of contents

1. General considerations
2. Addition-elimination mechanism
3. Vicarious nucleophilic substitution
4. The π-arene case
5. Elimination-addition mechanism
Chapter: Nucleophilic Aromatic Substitution

4. The π-arene case

5. Elimination-addition mechanism

the first observation

![Chemical reaction diagram](image)

the rationale

![Chemical reaction diagram](image)

Deprotonation is highly pK_a-dependant

Values calculated in gas-phase by DFT (B3LYP/6-31G)

4. The π-arene case

5. Elimination-addition mechanism

Major problem = Regioselectivity of the nucleophilic addition

![Chemical structure diagram showing reaction and regioisomers](image)

A solution = Intramolecular nucleophilic addition

![Chemical structure diagram showing intramolecular reaction](image)

4. The π-arene case

5. Elimination-addition mechanism

Typical example of intramolecular nucleophilic addition on arynes

![Chemical reaction](image_url)
Chapter: Nucleophilic Aromatic Substitution

4. The π-arene case

5. Elimination-addition mechanism

Applications - Kametani’s synthesis of Cryptowoline

Applications - Garg’s synthesis of (+)-tubingensin A

Chapter: Nucleophilic Aromatic Substitution

4. The π-arene case
5. Elimination-addition mechanism

Applications - Tokuyama’s synthesis of Dictyodendrin A

Knochel-Hauser base

Kumada-Tamao coupling

Chapter:
Nucleophilic Aromatic Substitution

4. The π-arene case

5. Elimination-addition mechanism

Applications to β_2-adrenoceptor agonist - Fairhurst’s synthesis of S1319

Nucleophilic aromatic substitution through aryne – a summary

need for a strong base
most acidic proton reacts first

intramolecular reactions favour regiocontrol
generated anion can react with electrophiles

For spectroscopic evidence of arynes, see:

Chapter: Nucleophilic Aromatic Substitution

Summary

Addition-elimination mechanism

![Reaction mechanism diagram for addition-elimination](image)

- **Meisenheimer complex**
- **Intramolecular versions:** Smiles, Truce-Smiles, Neuman-Kwart, Clayden

Vicarious nucleophilic substitution

![Reaction mechanism diagram for vicarious nucleophilic substitution](image)

- **Elimination-addition mechanism**

The π-arene case

![Reaction mechanism diagram for the π-arene case](image)

- η^6-arene-[M]
 - activates aromatic rings
 - alternative to the presence of an EWG

Elimination-addition mechanism

![Reaction mechanism diagram for elimination-addition](image)

- **Aryne**
 - need for a strong base
 - enables further reaction with electrophiles