

T1CA2-B ORG. CHEMIE 2B – REAKTIVITÄTEN UND ANWENDUNGEN IN DER ORGANISCHEN SYNTHESE

PROF. DR. ANJA HOFFMANN-RÖDER. SS 2025

Organische Chemie 2B

Reaktivitäten und Anwendungen in der Organischen Synthese

Kapitel 1: Radikale und Radikal-Reaktionen

Prof. Dr. Anja Hoffmann-Röder SS 2025

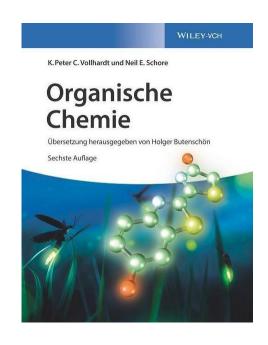
T1CA-B ORGANISCHE CHEMIE 2B - GRUNDLEGENDE METHODEN DER ORGANISCHEN SYNTHESE

PROF. DR. ANJA HOFFMANN-RÖDER, SS 2025

Empfohlene Lehrbücher

Organische Chemie Paula Y. Bruice ISBN: 978-3-86894-102-9 5. Auflage, Pearson Studium 2011

Preis: 89,95 €



Basisbuch Organische Chemie Carsten Schmuck ISBN: 978-3-86894-333-7 2. Auflage, Pearson Studium 2018 Preis: 29,95 € WILEY-VCH
William H. Brown und Thomas Poon

Einführung in die Organische Chemie

Einführung in die Organische Chemie William H. Brown, Thomas Poon ISBN: 978-3-527-34674-5 1. Auflage, Wiley-VCH Weinheim 2020

Preis: 59,90 €

Organische Chemie K. Peter C. Vollhardt, Neil. E. Schore ISBN: 978-3-527-34582-3 6. Auflage, Wiley-VCH Weinheim 2020 Prois: 80.00 £

Preis: 89,90 €

T1CA2-B ORG. CHEMIE 2B – REAKTIVITÄTEN UND ANWENDUNGEN IN DER ORGANISCHEN SYNTHESE

PROF. DR. ANJA HOFFMANN-RÖDER, SS 2025

1.1 Eigenschaften von Radikalen

LUDWIG-MAXIMILIANS-UNIVERSITÄT

T1CA2-B ORG. CHEMIE 2B – REAKTIVITÄTEN UND ANWENDUNGEN IN DER ORGANISCHEN SYNTHESE

PROF. DR. ANJA HOFFMANN-RÖDER, SS 2025

Klassifizierung organischer Reaktionen

Substitutionsreaktionen (S)

$$A - B + C \rightarrow A - C + B$$

Additionsreaktionen (A)

$$A + B \rightarrow C$$

Eliminierungsreaktionen (E)

$$C \rightarrow A + B$$

Kondensationsreaktionen (K)

$$A + B \rightarrow C + D$$

Umlagerungsreaktionen (R, Änderung der Konnektivität)

$$-A \rightarrow B$$

Redoxreaktionen

LUDWIG-MAXIMILIANS-UNIVERSITÄT

T1CA2-B ORG. CHEMIE 2B – REAKTIVITÄTEN UND ANWENDUNGEN IN DER ORGANISCHEN SYNTHESE

PROF. DR. ANJA HOFFMANN-RÖDER, SS 2025

Reaktive Zwischenstufen

Treten häufig in orgischen Reaktionen auf; Sind jedoch i.d.R. nicht isolierbar sondern nur nachweisbar (Spektroskopie) und können zu unerwünschten Nebenreaktionen führen.

Häufige reaktive Zwischenstufen:

Carbanionen R₃C:

Carbene R₂C:

Carbokationen (Carbeniumionen) R₃C⁺

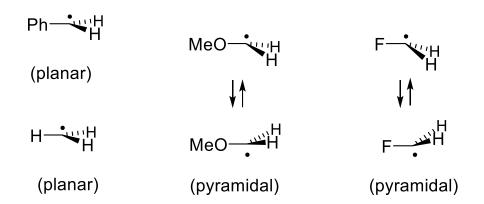

Radikale und Radikal-Ionen R₃C•

bzw. $(R_2C=O^{\bullet})^{-}$

p-Orbital = SOMO

C-Radikal

Die Hybridisierung im Kohlenstoffgerüst

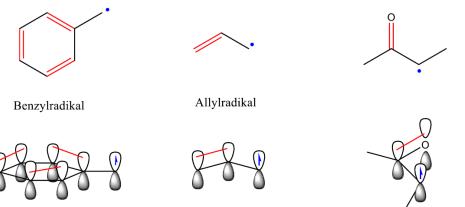

Тур	Hybridisierung	Geometrie	Winkel	Bindungslänge [pm]	Energie [kJ/mol]	Bindungsarten
Einfach-	sp³	Tetraeder	109,5°	154	345	4σ
Zweifach-	sp ²	Trig. planar	120°	134-140	615	3σ + 1π
Dreifach-	sp	Linear	180°	120	811	2σ + 2π

Radikaleigenschaften:

Teilchen mit einem oder mehreren ungepaarten Elektronen: R₃C•

C-Radikale sind planar oder pyramidal mit geringer Inversionsbarriere:

Konsequenz für Stereochemie radikalischer Substitutionen:


 σ^* -Orbitale, leer

PROF. DR. ANJA HOFFMANN-RÖDER, SS 2025

Radikalstabilitäten:

- Radikale werden wie Carbeniumionen durch elektronenliefernde Gruppen stabilisiert. Dabei ist das Ausmaß der Stabilisierung durch Alkylgruppen (Hyperkonjugation, +I-Effekt) bei Radikalen geringer als bei Carbeniumionen (Grund: 3-Elektronensystem). p-Orbital = SOMO
- Mesomere Effekte

Sterische Abschirmung

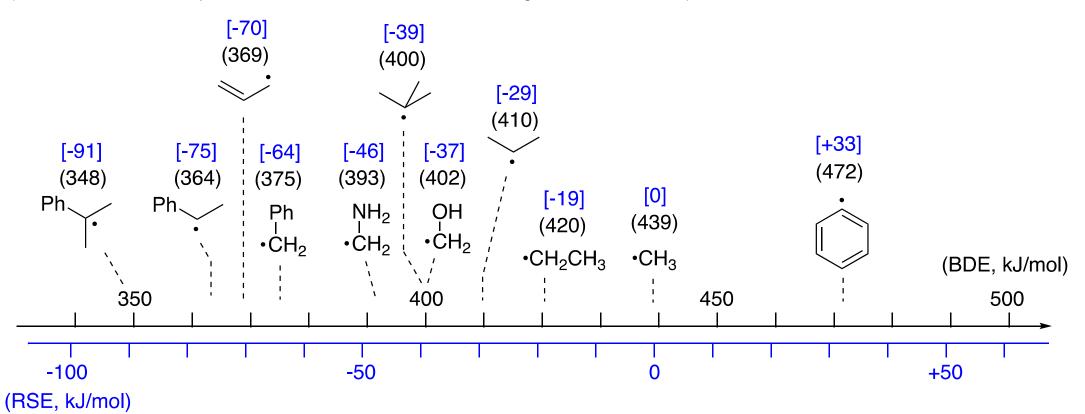
Grenzstrukturen des Benzylradikals

LUDWIG-MAXIMILIANS UNIVERSITÄT

Die Stabilität von C-Radikalen lässt sich gut durch die C-H-Bindungsdissoziationsenergie (BDE) der entsprechenden Radikalvorläufer quantifizieren:

$$H-CH_{3} \xrightarrow{BDE(C-H)} H \cdot + \cdot CH_{3} + 439$$

$$H \xrightarrow{C-CH_{3}} \xrightarrow{BDE(C-H)} H \cdot + \frac{H}{C-CH_{3}} + 420$$


$$+420 \xrightarrow{-19 \text{ kJ/mol}}$$

Unter Verwendung von Methan als Referenz werden die relativen BDE-Werte oft als Radikal-Stabilisierungs-Energie (RSE) bezeichnet. Negative Werte entsprechend dabei stabileren Radikalen:

RSE- und BDE-Werte für ausgewählte C-Radikale

(Daten aus Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies, CRC Press, 2007)

Stabilitätsreihe aus Bindungsdissoziationsenthalpien (BDEs)

Stabilisierung durch Mesomerie

Stabilisierung durch Hyperkonjugation

Keine Resonanzstabilisierung beim Phenyl-Radikal und Vinyl-Radikal möglich!

Persistente Radikale:

.... sind so stabil, dass sie nicht oder nur wenig mit sich selbst reagieren:

z.B. Das Trityl-Radikal (Gomberg 1900)

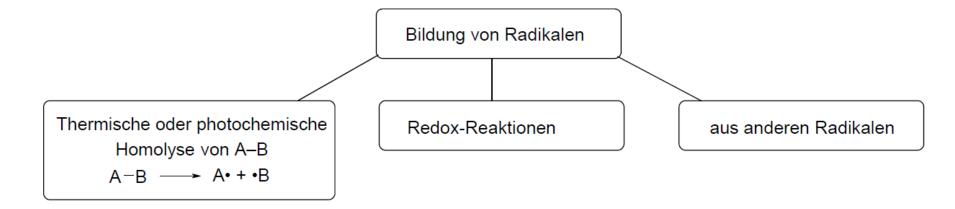
$$\begin{array}{c|c} & O_2N \\ & N-N-N-N-N \\ & & O_2N \end{array}$$

Diphenylpicrylhydrazyl-Radikal (DPPH)

Tetramethylpiperidin-N-oxid (TEMPO)

(2,4,6-tri-tert-butyl-phenoxy-Radikal)

T1CA2-B ORG. CHEMIE 2B – REAKTIVITÄTEN UND ANWENDUNGEN IN DER ORGANISCHEN SYNTHESE


PROF. DR. ANJA HOFFMANN-RÖDER, SS 2025

1.2 Bildung von Radikalen

PROF. DR. ANJA HOFFMANN-RÖDER, SS 2025

Radikalreaktionen typisch für die Funktionalisierung von Alkanen!

- Radikale sind oft instabil und müssen meist in situ erzeugt werden.
- Geeignete Edukte sind z.B. Verbindungen, die instabile bzw. leicht homolytisch spaltbare Bindungen besitzen, die oft in der Mitte des Moleküls liegen und durch Thermolyse und Photolyse 2 identische Radikale liefern.

PROF. DR. ANJA HOFFMANN-RÖDER, SS 2025

Thermolyse zur homolytischen Bindungsspaltung:

Von Peroxiden:

Di-tert-butylperoxid (DTBP)

Von Persäureestern:

Dibenzoylperoxid (DBPO)

Von Azoverbindungen:

Azo-bis-isobutyronitril (AIBN)

Photolyse zur homolytischen Bindungsspaltung:

$$Br - Br$$
 \xrightarrow{hv} 2 $Br \cdot$

Notwendigkeit der Absorption!

Halogen	Cl ₂	Br ₂	I ₂
ΔH [kJ/mol]	243	193	151
Licht (nm)	493	620	793 ← IR

Radikale aus Redoxreaktionen:

Birch-Reduktion:

OMe
$$Li/NH_3$$
 OMe OM

PROF. DR. ANJA HOFFMANN-RÖDER, SS 2025

Bildung von Radikalen – Redox-Reaktionen

Pinakol-Kupplung:

Acyloin-Kondensation:

Bildung von Radikalen – Redox-Reaktionen

McMurry-Reaktion:

TiCl₃
$$\xrightarrow{\text{LiAIH}_4}$$
 [Ti⁰]

2 $\xrightarrow{\text{O}}$ $\xrightarrow{\text{Ti}}$ $\xrightarrow{\text{O}}$ $\xrightarrow{\text{TiO}_2}$ + $\xrightarrow{\text{Ph}}$ (96%, 100% (*E*))

Sandmeyer-Reaktion:

$$Ar - X$$
 $Cu^{II}X_2$
 $Cu^{II}X_2$
 $Ar - N_2$
 $Cu^{II}X_2$
 $Ar - N_2$
 $Ar -$

Bildung von Radikalen – Photo-Redox-Katalyse

Sens.: Eosin Y

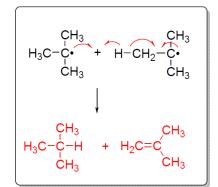
(B. König et al., *J. Am. Chem. Soc.* **2012**, 134, 2958)

PROF. DR. ANJA HOFFMANN-RÖDER, SS 2025

Radikale aus anderen Radikalen:

- durch die Reaktion von O₂ mit Alkylboranen

PROF. DR. ANJA HOFFMANN-RÖDER, SS 2025


1.3 Reaktionen von Radikalen

Verlust der Radikaleigenschaften

Radikal-Kombinationen

häufig diffusionskontrolliert ($k_2 = 10^9$ bis 10^{10} L mol⁻¹ s⁻¹)

• Disproportionierungen

Bildung neuer Radikale

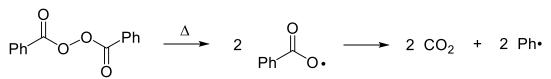
 Zersetzung von Radikalen bzw. Umlagerungen

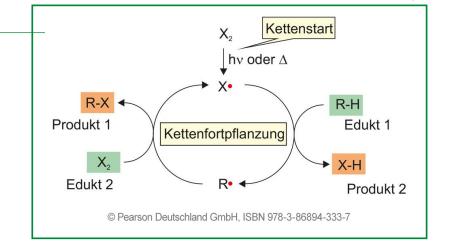
 Addition von Radikalen an Mehrfachbindungen

$$Br^{\bullet} + H_2C = CH_2 \longrightarrow Br - C - C^{\bullet}$$

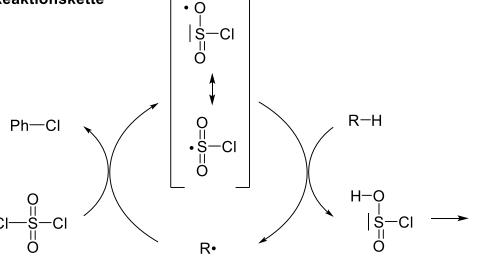
 Abspaltung von Atomen durch Radikale

Kap. 1.3


PROF. DR. ANJA HOFFMANN-RÖDER, SS 2025


Radikalische Halogenierung von Kohlenwasserstoffen

Reaktion insgesamt


$$R-H$$
 + SO_2CI_2 \xrightarrow{DBPO} $R-CI$ + SO_2 + HCI

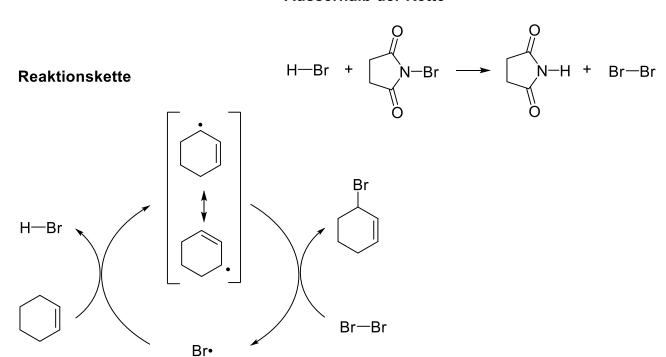
Initiierung

Reaktionskette

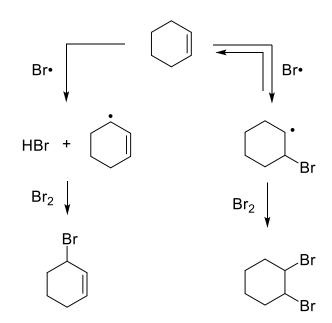
Die Chlorierung von Kohlenwasserstoffen mit Sulfurylchlorid (SO₂Cl₂,

Sdp.: +69 °C) ist einfacher als mit Cl₂ (Gas).

(G. H. Russell, H. C. Brown, J. Am. Chem. Soc. 1955, 77, 4031.)


Allylische Halogenierung: Wohl-Ziegler-Reaktion

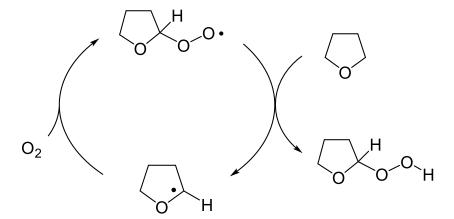
+ N-Br DBPO
Δ + N-H


N-Bromsuccinimid (NBS)

Initiierung (Ist hier nicht immer eindeutig; evtl. auch $Br_2 \xrightarrow{hv} 2 Br_{\bullet}$)

Ausserhalb der Kette

Konkurrenz zwischen radikalischer Addition und Substitution:


Autoxidation

Die Autoxidation von Ethern ist eine Komplikation bei deren Verwendung als Lösungsmittel. Für Tetrahydrofuran (THF) verläuft die Reaktion wie folgt:

Reaktion insgesamt

Initiierung (Ist i. d. R. nicht bekannt)

Reaktionskette

- · Höherer Sdp. als THF
- Reichert sich bei Destillation von THF an
- Führt bei Einengen am Rotationsverdampfer zu Explosionen
- Nachweis mit Peroxid-Teststäbchen

Insertion von O₂ in CH-Bindungen (vorzugsweise in allylischer, benzylischer oder α -Position von N, O, S)

Peroxid-Bildung ist besonders problematisch bei:

Diethylether Diisoproylether

Peroxid-Bildung tritt weniger auf bei:

Methyl-tert-butylether (MTBE)

Hock-Cumol-Verfahren

Ähnliche Autoxidationsreaktionen auch bei **Aldehyden**:

Die Autoxidation von (mehrfach) ungesättigten Fettsäuren ist von biologischer Bedeutung:

$$R \xrightarrow{+ R-O} R' \xrightarrow{+ R-O} R \xrightarrow{+ R-O} R' \xrightarrow{O_2} R' \xrightarrow{\bullet O-O} R' \xrightarrow{HO-O} R' \xrightarrow{HO-O} R'$$

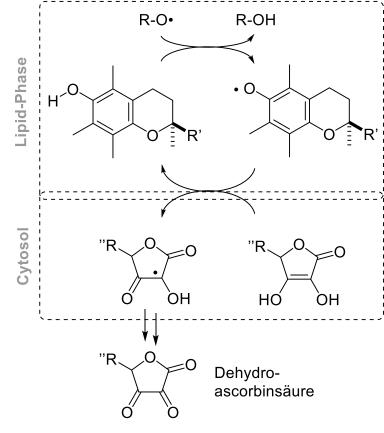
Die Rolle von Vitamin E und Vitamin C als Antioxidantien

lpha-Tocopherol

(wird zusammen mit anderen Tocopherolen als Vitamin E bezeichnet; RDA = 15 mg)

Vitamin C (Ascorbinsäure)

HO OH
$$pK_a = +4.1$$
 HO OH $PK_a = +4.1$ HO OH $PK_a = +4.1$ RDA = 90 mg


Phospholipide als Zellwandkomponenten

Autoxidation zu Peroxiden

(Table 1)

(Palmitat (16:0))

Kombinierte Wirkung von Vitamin E und C

Defunktionalisierung durch Radikalreaktionen

$$X = Br, I$$

Initiierung

$$NC$$
 N
 N
 CN
 M
 N_2 + 2
 CN
 N_2
 N_3
 N_3
 N_4
 N_4
 N_5
 N_5

Reduktion von Alkoholen (Barton-McCombie-Reduktion)

Derivatisierung

alternatives Reduktionsmittel: HSi(SiMe₃)₃ Tristrimethylsilylsilan (TTMSS)

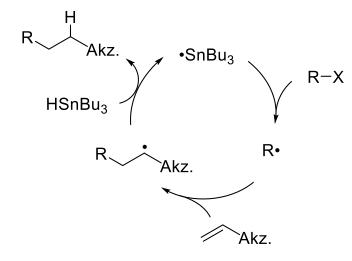
Reaktionskette

Reaktionskette

T1CA2-B ORG. CHEMIE 2B – REAKTIVITÄTEN UND ANWENDUNGEN IN DER ORGANISCHEN SYNTHESE

PROF. DR. ANJA HOFFMANN-RÖDER, SS 2025

1.4 Bildung von C-C Bindungen mit Radikal-Reaktionen



Beispiel 1

Giese-Reaktion

$$R-X$$
 + $HSnBu_3$ + Akz . AIBN Akz. + $XSnBu_3$ X = Br , I

Reaktionskette

Initiierung

Beispiel 2

Meerwein-Arylierung

Mechanismus

S. Kindt, M. R. Heinrich, Synthesis 2016, 48, 1597–1606.

Radikalische Cyclisierungsreaktionen

endo exo

Intramolekulare Radikalcyclisierungen sind sehr schnelle und damit präparativ wichtige Reaktionen (entropisch bevorzugt).

2% Beispiel für Baldwin-Regeln Acc. Chem. Res. 1993, 26, 476

Br Bu₃SnH
$$\stackrel{1}{\underset{2}{\overset{1}{\longrightarrow}}}$$
 AlBN $\stackrel{1}{\underset{3}{\overset{1}{\longrightarrow}}}$ $\stackrel{1}{\underset{3}{\overset{1}{\longrightarrow}}}$

98%

Beispiel