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Time-Gated FCS
How can we enhance the capabilities of FCS?

Incorporate the additional information of the photon 
in the analysis

Lifetime of the Excited State
Wavelength
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Use Multidimensional Analysis

Select photons for analysis based upon photon properties

Time-Gated FCS

Use delay between the excitation pulse and fluorescence 
emission to discriminate between photons based upon 
their duration in the excited state
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Removal of Fluorescent Background
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Quantitative measurements in the presence of a 
fluorescence background
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Multiple Species Discrimination
Check sample inhomogeneity
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MetMb stochastically labeled with TMR

TMR labeled close to the heme is quenched

Autocorrelation Function
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where is the relative intensity of the ith species

If sample contains multiple lifetime species, 
G(0) will depend upon gate duration
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Static versus Dynamic Heterogeneity

Is the heterogeneity static or dynamic?
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Ratio measurements with and without gate!

For unimolecular reaction: 

Amplitude of the 
relaxation will vary with 
gate duration

For non-interacting species: 

Amplitude changes with 
gate duration

Note*: Ratio analysis is sensitive to offsets in the ACF 
due to laser instabilities, vibrations, bleaching . . .



Enhancement of FCS

Are FCS measurements Enhanced by Time-Gating?

Signal-to-Noise Considerations:

High Intensity Limit:

Uncertainty dominated by number of fluctuations:
Loss of photons by gating unimportant 

Low Intensity Limit:

Uncertainty dominated by number of photons:
Signal-to-noise is proportional to IT G(0)
(both IT and G(0) depend on the gate width)
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Calculation of the S/N vs Gate Width for a mixture of 
TMR and ANS with Equal Fluorescence Intensities



Cross-Correlation Spectroscopy

Two channel 
measurements

Sample Objective
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Channel 1

Channel 2 Cross Correlation
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|| Polarized light⊥ Polarized 
light

Polarizing 
Beamsplitter

Polarization 
Measurements

Red PhotonsGreen PhotonsDichroic MirrorTwo-Color 
Experiments

The remaining 
Signal

50% of the total 
Signal

50/50 
Beamsplitter

Fast Correlation 
Measurements

Channel 2Channel 1
Beamsplitting

Optics
Type of 

Experiment



Cross-Correlation Spectroscopy
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The product                                    is only non-zero if i 
and j are the same particle or if they diffuse together. 

)0,(),( r'r ji CC δτδ

( )

2
1

2 /1
1

/1
1)( ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

+⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
=

ijij DzrDji

ij
ij wwNN

N
G

ττττ
γ

τ
ijN



Fast Cross-Correlation Spectroscopy

Channel 2

Two channel 
measurements

Cross 
Correlation

Channel 1

Sample

Objective
Dichroic Mirror

APD 1

A
PD

 2

50/50 
Beamsplitter
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Same information as ACF, but without detector artifacts

Signal-to-noise considerations:
The S/N ratio is proportional to molecular brightness, ε

εCCF εACF/2
(S/N)CCF = (S/N)ACF/2

For symmetric CCFs, 
G1,2(τ) = G2,1(τ), 

and the S/N ratio of the total CCF, {G1,2(τ) + G2,1(τ)}/2, 
is √½ that of the ACF
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Fast Cross-Correlation Spectroscopy
Compensation for detector dead time and removal of 

afterpulsing artifacts
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Two-Color Cross-Correlation Spectroscopy

Two channel 
measurements

Sample Objective

Dichroic
Mirrors

APD 1

A
PD

 2

Green 
Channel

Red Channel Cross Correlation
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The sample consists of three species, NG, NR, and NGR
Ideally, only the NGR cross correlate

Amplitude is proportional to concentration of NGR!!!



Two-Color Cross-Correlation Spectroscopy

Kettling, Koltermann, Schwille, Eigen  PNAS (1998) 95:1416

Rhodamine Green
Cy5

Labeled double stranded DNA

Reaction of restriction endonuclease EcoRI with 
dsDNA



Spectral Cross Talk

Multiple Molecular Brightnesses

εG,GG, εG,GR: Brightness of the Green dye with Green Excitation 
in the Green and Red channels 

εR,GG, εR,GR: Brightness of the Red dye with Green Excitation 
in the Green and Red channels

εG,RG, εG,RR: Brightness the Green dye with Red Excitation in 
the Green and Red channels 

εR,RG, εR,RR: Brightness of the Red dye with Red Excitation in 
the Green and Red channels
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Spectral Cross talk

Typically, εR,GG = εR,RG = 0 ; The Red dye does not fluoresce in 
the Green channel

εG,RG = εG,RR = 0 ; The Green dye does not absorb 
Red excitation

Green excitation Red excitation



Spectral Cross Talk

The terms add linearly with the fractional intensity!

For identical probe volumes
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Assuming three species, CG, CR, and CGR, where the double 
labeled molecules have the properties of both of the Red and 
Green molecules, we have:



Non-Aligned Volumes

For two concentric probe volumes of different dimensions:
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The CCF is given by:



Rotational Diffusion

Two channel 
measurements

⊥ Polarized

|| Polarized

Polarizing 
Beamsplitter

Cube

Sample Objective

Dichroic
Mirror

APD 1

A
PD

 2

Kask et al, Biophys J 
(1989) 55:213

Rotation of Texas-Red Labeled 
Porcine Pancreatic Lipase

The CCF for Gxxy and Gxyx are Asymmetric!!



Rotational Diffusion
Orientation of the fluorophore must be incorporated.

Absorption and detection efficiency depend upon the polarization:
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The probability of a molecule absorbing a photon at t1, 
emitting the first photon at t2, absorbing a second 
photon at t3, and emitting a second photon at t4 is:
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where F’(Q(t)) includes all non-orientation properties of the 
fluorophore (e.g. position, electronic state, chemical state, …)

Assuming Ω and Q are independent:
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Rotational Diffusion
The normal autocorrelation function measures the probability 
of measuring a second photon with a delay τ

Define t2 = 0 and t4 = τ
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Assuming an mono-exponential decay of lifetime τfl and taking 
the limit as τfl 0 (i.e. we are interested in t >> τfl), we obtain:
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where

and the Ylm(µ) are the spherical harmonics 

Assuming the excitation and absorption dipoles are equivalent 
(i.e. µa = µe = µ) and molecule is a rigid sphere undergoing 
rotational diffusion:
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or more precisely:


